PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 46 > pp. 143-152

POLARIMETRIC TARGET DETECTION USING STATISTIC OF THE DEGREE OF POLARIZATION

By B. Ren, L. Shi, and G. Wang

Full Article PDF (201 KB)

Abstract:
The degree of polarization (DoP) can be utilized as a detection statistic in the polarimetric radar to achieve target detection performance improvement. In this paper, a polarimetric radar model is established, which includes reflections from both target and clutter at first. Then, probability density functions (PDFs) of the estimated DoP are expressed in closed form, which is derived from joint eigenvalue distributions of complex noncentral Wishart matrices. The detector is developed and evaluated theoretically on the basis of the statistical properties of the DoP. Finally, a comparison between the new DoP detector and single-polarization detector is presented against real data. The performance improvement is demonstrated by the comparison results.

Citation:
B. Ren, L. Shi, and G. Wang, "Polarimetric Target Detection Using Statistic of the Degree of Polarization," Progress In Electromagnetics Research M, Vol. 46, 143-152, 2016.
doi:10.2528/PIERM15121007

References:
1. Giuli, D., "Polarization diversity in radars," Proceedings of the IEEE, Vol. 74, No. 2, 245-267, 1986.
doi:10.1109/PROC.1986.13457

2. Novak, L. M., M. B. Sechtin, and M. J. Cardullo, "Studies of target detection algorithms that use polarimetric radar data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 25, No. 2, 150-165, 1989.
doi:10.1109/7.18677

3. Park, H., J. Li, and H. Wang, "Polarization-space-time domain generalized likelihood ratio detection of radar targets," Signal Processing, Vol. 41, No. 1, 153-164, 1995.
doi:10.1016/0165-1684(94)00097-J

4. Pastina, D., P. Lombardo, and T. Bucciarelli, "Adaptive polarimetric target detection with coherent radar. I. Detection against Gaussian background," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 4, 1194-1206, 2001.
doi:10.1109/7.976959

5. Hurtado, M. and A. Nehorai, "Polarimetric detection of targets in heavy inhomogeneous clutter," IEEE Transactions on Signal Processing, Vol. 56, No. 4, 1349-1361, Apr. 2008.
doi:10.1109/TSP.2007.909046

6. Kelly, E. J., "An adaptive detection algorithm," IEEE Transactions on Aerospaceand Electronic Systems, Vol. 22, No. 1, 115-127, 1986.
doi:10.1109/TAES.1986.310745

7. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th Ed., Cambridge Univ. Press, Cambridge, U.K., 1999.
doi:10.1017/CBO9781139644181

8. Wolf, E., "Coherence properties of partially polarized electromagnetic radiation," II Nuovo Cimento, Vol. XIII, No. 6, 1165-1181, Sep. 1959.
doi:10.1007/BF02725127

9. Galletti, M. and D. S. Zrnic, "Degree of polarization at simultaneous transmit: Theoretical aspects," IEEE Transactions on Geoscience and Remote Sensing Letters, Vol. 9, No. 3, 383-387, May 2012.
doi:10.1109/LGRS.2011.2170150

10. Galletti, M., D. S. Zrnic, V. Melnikov, and R. J. Doviak, "Degree of polarization at horizontal transmit theory and applications for weather radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 4, 1291-1301, Apr. 2012.
doi:10.1109/TGRS.2011.2167516

11. Shirvany, R., M. Chabert, and J. Tourneret, "Estimation of the degree of polarization for hybrid/compact and linear dual-pol SAR intensity images principles and applications," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 1, 539-551, Jan. 2013.
doi:10.1109/TGRS.2012.2202242

12. Shirvany, R., M. Chabert, and J. Tourneret, "Ship and oil-spill detection using the degree of polarization in linear and hybrid/compact dual-pol SAR," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 5, No. 3, 885-892, Jun. 2012.
doi:10.1109/JSTARS.2012.2182760

13. Del Rio, V. S., J. M. P. Mosquera, M. V. Isasa, and M. E. de Lorenzo, "Statistics of the degree of polarization," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 7, 2173-2175, Jul. 2006.
doi:10.1109/TAP.2006.877210

14. Medkour, T. and A. T. Walden, "Statistical properties of the estimated degree of polarization," IEEE Transactions on Signal Processing, Vol. 56, No. 1, 408-414, Jan. 2008.
doi:10.1109/TSP.2007.906767

15. Goodman, N. R., "Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)," The Annals of Mathematical Statistics, Vol. 34, 152-177, 1963.
doi:10.1214/aoms/1177704250

16. James, A. T., "Distributions of matrix variates and latent roots derived from normal samples," The Annals of Mathematical Statistics, Vol. 35, No. 1, 475-501, 1964.
doi:10.1214/aoms/1177703550

17. Gross, K. I. and D. S. P.Richards, "Total positivity, spherical series, and hypergeometric functions of matrix argument," Journal of Approximation Theory, Vol. 59, 224-246, 1989.
doi:10.1016/0021-9045(89)90153-6

18. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, 6th Ed., Academic Press, New York, 2000.

19. Drosopoulos, A., "Description of the OHGR database," Defence Research Establishment, Technical Note. 94-14, Ottawa, Canada, 1994.


© Copyright 2010 EMW Publishing. All Rights Reserved