Vol. 47

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

The Cherenkov Emission in Regular and Random Photonic Crystals

By Gennadiy Burlak and Erika Martinez-Sanchez
Progress In Electromagnetics Research M, Vol. 47, 77-86, 2016


We systematically study the Cherenkov optical emission by a nonrelativistic charge uniformly moving in parallel to surface of a photonic crystal by the FDTD simulations. It is found that a near-static structure of field oscillations produced by a discontinuity of dielectric permittivity in the surface of photonic lattice is generated. Such oscillations have large amplitude in the Cherenkov group cone and generate a number of well defined spectral resonances corresponding to eigenmodes of the photonic grid. The dynamics and field properties in photonic lattice with random vacancies are investigated too. It is found that even at medium level of a random perturbation the field shape shows the structural stability of the Cherenkov emission field in a photonic crystal.


Gennadiy Burlak and Erika Martinez-Sanchez, "The Cherenkov Emission in Regular and Random Photonic Crystals," Progress In Electromagnetics Research M, Vol. 47, 77-86, 2016.


    1. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light, Princeton University Press, 2008.

    2. Luo, C., M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Cerenkov radiation in photonic crystals," Science, Vol. 299, 368-371, 2003.

    3. Chang, G., L.-J. Chen, and F. X. Kurtner, "Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation," Optics Letters, Vol. 35, No. 14, 2361-2363, 2010.

    4. Shen, X.-W., Y. J.-H. Yuan, KX.-Z. Sang, C.-X. Yu, R. Lan, X. Min, H. Ying, C.-M. Xia, and L.-T. Hou, "Highly efficient Cherenkov radiation generation in the irregular point of hollow-core photonic crystal fiber," Chinese Phys. B, Vol. 21, 114102, 2012.

    5. Genevet, P., D. Wintz, A. Ambrosio, A. She, R. Blanchard, and F. Capasso, "Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial," Nature Nanotechnology, Vol. 10, 804-809, 2015.

    6. Cherenkov, P. A., "Visible emission of clean liquids by action of γ-radiation," Dokl. Akad. Nauk., Vol. 2, 451-454, 1934.

    7. Jackson, J. D., Classical Electrodynamics, John Willey and Sons, 1998.

    8. Afanasiev, G. N., Cherenkov Radiation in a Dispersive Medium, Vavilov-Cherenkov and Synchrotron Radiation, Fundamental Theories of Physics, Kluwer Academic Publishers, 2004.

    9. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, 2005.

    10. Burlak, G., "Spectrum of Cherenkov radiation in dispersive metamaterials with negative refraction index," Progress In Electromagnetics Research, Vol. 132, 149-158, 2012.

    11. Burlak, G. and E. Martínez-Sánchez, "Change of structure of the Cherenkov emission at modulated source in dispersive metamaterials," Progress In Electromagnetics Research, Vol. 139, 277-288, 2013.

    12. Kim, S. H., S. K. Kim, and Y. H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B, Vol. 73, 235117, 2006.

    13. Averkov, Yu. O. and V. M. Yakovenko, "Cherenkov radiation by an electron particle that moves in a vacuum above a left-handed material," Phys. Rev. B, Vol. 79, 193402-193412, 2005.

    14. Xi, S., H. Chen, T. Jiang, L. Ran, J. Huangfu, B. L. Wu, J. A. Kong, and M. Chen, "Experimental verification of reversed cherenkov radiation in left-handed metamaterial," Phys. Rev. Lett., Vol. 103, 194801, 2009.

    15. Averkov, Yu. O., A. V. Kats, and V. M. Yakovenko, "Electron beam excitation of left-handed surface electromagnetic waves at artificial interfaces," Phys. Rev. B, Vol. 72, 205110-205114, 2005.

    16. Zhou, J., Z. Duan, Y. Zhang, M. Hu, W. Liu, P. Zhang, and S. Liu, "Numerical investigation of Cherenkov radiations emitted by an electron beam particle in isotropic double-negative metamaterials," Nuclear Instruments and Methods in Physics Research Section A, Vol. 654, No. 1, 475-480, 2011.

    17. Duan, Z. Y., Y. S. Wang, X. T. Mao, W. X. Wang, and M. Chen, "Experimental demonstration of double-negative metamaterials partially filled in a circular waveguide," Progress In Electromagnetics Research, Vol. 121, 215-224, 2011.

    18. Zhu, L., F.-Y. Meng, F. Zhang, J. Fu, Q. Wu, X. M. Ding, and J. L.-W. Li, "An ultra-low loss split ring resonator by suppressing the electric dipole moment approach," Progress In Electromagnetics Progress In Electromagnetics, Vol. 137, 239-254, 2013.

    19. Duan, Z., C. Guo, and M. Chen, "Enhanced reversed Cherenkov radiation in a waveguide with double-negative metamaterials," Opt. Express, Vol. 19, 13825-13830, 2011.

    20. García de Abajo, F. J., A. G. Pattantyus-Abraham, N. Zabala, A. Rivacoba, M. O. Wolf, and P. M. Echenique, "Cherenkov effect as a probe of photonic nanostructures," Phys. Rev. Lett., Vol. 91, 143902, 2003.

    21. Brasch, V., M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, "Photonic chip-based optical frequency comb using soliton Cherenkov radiation,", DOI: 10.1126/science.aad4811, 2015.

    22. Schwartz, T., G. Bartal, S. Fishman, and M. Segev, "Transport and Anderson localization in disordered two-dimensional photonic lattices," Nature, Vol. 446, 52-55, 2007.

    23. Wiersma, D. S., "The physics and applications of random lasers," Nat. Phys., Vol. 4, 359-367, 2008.

    24. Burlak, G. and Y. G. Rubo, "Mirrorless lasing from light emitters in percolating clusters," Phys. Rev. A, Vol. 92, 013812, 2015.

    25. Carusotto, I., M. Artoni, G. C. La Rocca, and F. Bassani, "Slow group velocity and Cherenkov radiation," Phys. Rev. Lett., Vol. 87, 064801, 2001.

    26. Udagedara, I., M. Premaratne, I. D. Rukhlenko, H. T. Hattori, and G. P. Agrawal, "Unified perfectly matched layer for finite-difference time-domain modeling of dispersive media," Opt. Express, Vol. 7, 22179-21190, 2009.