Vol. 49
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-08-25
Modeling the Effect of Periodic Wall Roughness on the Indoor Radio Propagation Channel
By
Progress In Electromagnetics Research M, Vol. 49, 167-179, 2016
Abstract
A deterministic model based on ray tracing and dealing with periodic roughness is developed, for an indoor radio propagation channel and experimentally validated at a frequency of 10 GHz. Two different scenarios are studied, namely a smooth corridor and a corridor having artificial periodic roughness. The periodic roughness consists of a set of conductive semi-cylinders attached to the corridor sidewalls. Two different antenna setups are considered during the measurements, horn-horn antennas and patch-patch antennas, in transmitter-receiver configurations. Excellent agreement is achieved in terms of the received powers versus distance and the power delay profiles. The signal fading is analyzed. The statistical parameters are also generated, and a fair agreement is observed between the simulation and measurement results.
Citation
Vincent Adelphe Fono, and Larbi Talbi, "Modeling the Effect of Periodic Wall Roughness on the Indoor Radio Propagation Channel," Progress In Electromagnetics Research M, Vol. 49, 167-179, 2016.
doi:10.2528/PIERM16042802
References

1. Lim, S. Y., Z. Yun, and M. F. Iskander, "Propagation measurement and modeling for indoor stairwells at 2.4 and 5.8 GHz," IEEE Transactions on Antennas and Propagation, Vol. 62, 4754-4761, 2014.
doi:10.1109/TAP.2014.2336258

2. Lim, S. Y., A. K. Awelemdy, Z. Yun, and M. F. Iskander, "Experimental study of propagation characteristics in an open-trench drain," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 60-63, 2016.
doi:10.1109/LAWP.2015.2429654

3. Tarng, J. H., W. R. Chang, and B. J. Hsu, "Three-dimensional modeling of 900-MHz and 2.44-GHz radio propagation in corridors," IEEE Transactions on Vehicular Technology, Vol. 46, 519-527, 1997.
doi:10.1109/25.580790

4. Brown, T., E. De Carvalho, and P. Kyritsi, "Index," Practical Guide to the MIMO Radio Channel with MATLAB Examples, 144-192, John Wiley & Sons, Ltd., Ed., 2012.

5. Hrovat, A., G. Kandus, and T. Javornik, "A survey of radio propagation modeling for tunnels," IEEE Communications Surveys & Tutorials, Vol. 16, 658-669, 2014.
doi:10.1109/SURV.2013.091213.00175

6. Tarng, J. H., L. Wen-Shun, H. Yeh-Fong, and H. Jiunn-Ming, "A novel and efficient hybrid model of radio multipath-fading channels in indoor environments," IEEE Transactions on Antennas and Propagation, Vol. 51, 585-594, 2003.
doi:10.1109/TAP.2003.809822

7. Polivka, M., M. Svanda, P. Hudec, and S. Zvanovec, "UHF RF identification of people in indoor and open areas," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 1341-1347, 2009.
doi:10.1109/TMTT.2009.2017305

8. Geng, S. and P. Vainikainen, "Millimeter-wave propagation in indoor corridors," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1242-1245, 2009.
doi:10.1109/LAWP.2009.2035723

9. Helhel, S., "Comparison of 900 and 1800 MHz indoor propagation deterioration," IEEE Transactions on Antennas and Propagation, Vol. 54, 3921-3924, 2006.
doi:10.1109/TAP.2006.884311

10. Fono, V. A., L. Talbi, and N. Hakem, "Propagation modeling in complex rough environment based on ray tracing," IEEE Antennas and Propagation Society International Symposium (APSURSI), 2013, 1924-1925, 2013.
doi:10.1109/APS.2013.6711620

11. General Headquaters of Civil Defence, Ministry of Interior, United Arab Emirates, (2011, June 20, 2016) UAE Fire and Life Safety Code of Practice, Available: www.dcd.gov.ae/portal/eng/UAEFIRECODE ENG.pdf.

12. Castel Fire, (June 20) General Fire Suppression, Available: http://www.castlefire.co.uk/legacy/pages/suppression/gensupp.html.

13. Fire Service Department of the Government of Hong Kong, (June 20, 2016) Code of Practice for the Storage and Use of Special Gases in the Micro-electronics Industry, Available: http://www.hkfsd.gov.hk/eng/source/licensing/storage_special_gas.pdf.

14. TOMCO2 Fire Systems. (June 20, 2016) High Pressure CO2 Engineering, Installation and Operation Manual, Available: www.tomcosystems.com/wp-content/uploads/2013/09/HPCO2_Engineering_Manual.pdf.

15. Yang, C.-F., B.-C. Wu, and C.-J. Ko, "A ray-tracing method for modeling indoor wave propagation and penetration," IEEE Transactions on Antennas and Propagation, Vol. 46, 907-919, 1998.
doi:10.1109/8.686780

16. Sidhu, S. S., A. Khosla, and A. Sharma, "Implementation of 3-D Ray tracing propagation model for indoor wireless communication," International Journal of Electronics Engineering, Vol. 4, No. 1, 43-47, 2012.

17. International Telecommunications Union Radiocommunications, Sector (ITU-R), (2012, June 20, 2016) "Propagation data and prediction methods for the planning of indoor radiocommunications systems and radio local area networks in the frequency range 900 MHz to 100 GHz, Recommendation ITU-R P.1238-7 (02/2012),", Available: https://www.itu.int/rec/R-REC-P.1238/fr.

18. McNamara, D. A., C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction, Artech House, 1990.

19. Pathak, P., W. Burnside, and R. Marhefka, "A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface," IEEE Transactions on Antennas and Propagation, Vol. 28, 631-642, 1980.
doi:10.1109/TAP.1980.1142396

20. Ghaddar, M., L. Talbi, G. Y. Delisle, and J. LeBel, "Deflecting-obstacle effects on signal propagation in the 60 GHz band," IEEE Transactions on Antennas and Propagation, Vol. 61, 403-414, 2013.
doi:10.1109/TAP.2012.2216852

21. Han, C., A. O. Bicen, and I. F. Akyildiz, "Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band," IEEE Transactions on Wireless Communications, Vol. 14, 2402-2412, 2015.
doi:10.1109/TWC.2014.2386335

22. El Azhari, M., M. Nedil, I. B. Mabrouk, K. Ghanem, and L. Talbi, "Characterization of an off-body channel at 2.45 GHz in an underground mine environment," Progress In Electromagnetics Research M, Vol. 43, 91-100, 2015.
doi:10.2528/PIERM15061504

23. Keysight Technologies, (June 20) Keysight 2-port and 4-port PNA-X Network Analyzer, N5247A-10 MHz to 67 GHz, Available: literature.cdn.keysight.com/litweb/pdf/N5247-90002.pdf.

24. ST Electronics, (June 20) MSAN-001 X-band Microwave Motion Sensor Module Application Note, Available: www.limpkin.fr/public/HB100/HB100_Microwave_Sensor_Application_Note.pdf.

25. Durgin, G. D. and T. S. Rappaport, "Theory of multipath shape factors for small-scale fading wireless channels," IEEE Transactions on Antennas and Propagation, Vol. 48, 682-693, 2000.
doi:10.1109/8.855486

26. Kremo, H., "On the spatial and temporal coherence of wireless vehicular short range channels,", 2011.

27. Gans, M. J., "A power-spectral theory of propagation in the mobile-radio environment," IEEE Transactions on Vehicular Technology, Vol. 21, 27-38, 1972.
doi:10.1109/T-VT.1972.23495

28. Clarke, R. H., "A statistical theory of mobile-radio reception," Bell System Technical Journal, Vol. 47, 957-1000, 1968.
doi:10.1002/j.1538-7305.1968.tb00069.x

29. Keysight Technologies, (June 20) "Applying error correction to network analyzer measurements,", Available: literature.cdn.keysight.com/litweb/pdf/5965-7709E.pdf.

30. Varela, M. S. and M. G. Sanchez, "RMS delay and coherence bandwidth measurements in indoor radio channels in the UHF band," IEEE Transactions on Vehicular Technology, Vol. 50, 515-525, 2001.
doi:10.1109/25.923063

31. Pahlavan, K. and A. H. Levesque, "Measurement of wideband and UWB channel characteristics," Wireless Information Networks, 149-203, John Wiley & Sons, Inc., Ed., 2005.

32. Wang, Q., B. Ai, K. Guan, D. W. Matolak, R. He, and X. Zhou, "Ray-based statistical propagation modeling for indoor corridor scenarios at 15 GHz," International Journal of Antennas and Propagation, Vol. 2016, 12, 2016.

33. Valenzuela, R. A., O. Landron, and D. L. Jacobs, "Estimating local mean signal strength of indoor multipath propagation," IEEE Transactions on Vehicular Technology, Vol. 46, 203-212, 1997.
doi:10.1109/25.554753

34. Rappaport, T. S., Wireless Communications: Principles and Practice, Prentice Hall PTR, 2002.

35. Deng, S., M. K. Samimi, and T. S. Rappaport, "28 GHz and 73 GHz millimeter-wave indoor propagation measurements and path loss models," 2015 IEEE International Conference on Communication Workshop (ICCW), 1244-1250, 2015.
doi:10.1109/ICCW.2015.7247348

36. Chan, K. M., A. Subic, F. Fuss, P. Clifton, J. A. Kirkup, D. D. Rowlands, et al. "6th Asia-Pacific congress on sports technology (APCST) indoor propagation investigation from a 2.4 GHz waist mounted beacon," Procedia Engineering, Vol. 60, 188-194, Jan. 1, 2013.

37. Maccartney, G. R., T. S. Rappaport, S. Sun, and S. Deng, "Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks," IEEE Access, Vol. 3, 2388-2424, 2015.
doi:10.1109/ACCESS.2015.2486778

38. Goldsmith, A., Wireless Communications, Cambridge University Press, 2005.
doi:10.1017/CBO9780511841224