Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 49 > pp. 167-179


By V. A. Fono and L. Talbi

Full Article PDF (371 KB)

A deterministic model based on ray tracing and dealing with periodic roughness is developed, for an indoor radio propagation channel and experimentally validated at a frequency of 10 GHz. Two different scenarios are studied, namely a smooth corridor and a corridor having artificial periodic roughness. The periodic roughness consists of a set of conductive semi-cylinders attached to the corridor sidewalls. Two different antenna setups are considered during the measurements, horn-horn antennas and patch-patch antennas, in transmitter-receiver configurations. Excellent agreement is achieved in terms of the received powers versus distance and the power delay profiles. The signal fading is analyzed. The statistical parameters are also generated, and a fair agreement is observed between the simulation and measurement results.

V. A. Fono and L. Talbi, "Modeling the Effect of Periodic Wall Roughness on the Indoor Radio Propagation Channel," Progress In Electromagnetics Research M, Vol. 49, 167-179, 2016.

1. Lim, S. Y., Z. Yun, and M. F. Iskander, "Propagation measurement and modeling for indoor stairwells at 2.4 and 5.8 GHz," IEEE Transactions on Antennas and Propagation, Vol. 62, 4754-4761, 2014.

2. Lim, S. Y., A. K. Awelemdy, Z. Yun, and M. F. Iskander, "Experimental study of propagation characteristics in an open-trench drain," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 60-63, 2016.

3. Tarng, J. H., W. R. Chang, and B. J. Hsu, "Three-dimensional modeling of 900-MHz and 2.44-GHz radio propagation in corridors," IEEE Transactions on Vehicular Technology, Vol. 46, 519-527, 1997.

4. Brown, T., E. De Carvalho, and P. Kyritsi, "Index," Practical Guide to the MIMO Radio Channel with MATLAB Examples, 144-192, John Wiley & Sons, Ltd., Ed., 2012.

5. Hrovat, A., G. Kandus, and T. Javornik, "A survey of radio propagation modeling for tunnels," IEEE Communications Surveys & Tutorials, Vol. 16, 658-669, 2014.

6. Tarng, J. H., L. Wen-Shun, H. Yeh-Fong, and H. Jiunn-Ming, "A novel and efficient hybrid model of radio multipath-fading channels in indoor environments," IEEE Transactions on Antennas and Propagation, Vol. 51, 585-594, 2003.

7. Polivka, M., M. Svanda, P. Hudec, and S. Zvanovec, "UHF RF identification of people in indoor and open areas," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 1341-1347, 2009.

8. Geng, S. and P. Vainikainen, "Millimeter-wave propagation in indoor corridors," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1242-1245, 2009.

9. Helhel, S., "Comparison of 900 and 1800 MHz indoor propagation deterioration," IEEE Transactions on Antennas and Propagation, Vol. 54, 3921-3924, 2006.

10. Fono, V. A., L. Talbi, and N. Hakem, "Propagation modeling in complex rough environment based on ray tracing," IEEE Antennas and Propagation Society International Symposium (APSURSI), 2013, 1924-1925, 2013.

11. General Headquaters of Civil Defence, Ministry of Interior, United Arab Emirates, (2011, June 20, 2016), UAE Fire and Life Safety Code of Practice, Available: www.dcd.gov.ae/portal/eng/UAEFIRECODE ENG.pdf.

12. Castel Fire, (June 20), General Fire Suppression, Available: http://www.castlefire.co.uk/legacy/pages/suppression/gensupp.html.

13. Fire Service Department of the Government of Hong Kong, (June 20, 2016), Code of Practice for the Storage and Use of Special Gases in the Micro-electronics Industry, Available: http://www.hkfsd.gov.hk/eng/source/licensing/storage_special_gas.pdf.

14. TOMCO2 Fire Systems. (June 20, 2016), High Pressure CO2 Engineering, Installation and Operation Manual, Available: www.tomcosystems.com/wp-content/uploads/2013/09/HPCO2_Engineering_Manual.pdf.

15. Yang, C.-F., B.-C. Wu, and C.-J. Ko, "A ray-tracing method for modeling indoor wave propagation and penetration," IEEE Transactions on Antennas and Propagation, Vol. 46, 907-919, 1998.

16. Sidhu, S. S., A. Khosla, and A. Sharma, "Implementation of 3-D Ray tracing propagation model for indoor wireless communication," International Journal of Electronics Engineering, Vol. 4, No. 1, 43-47, 2012.

17. International Telecommunications Union Radiocommunications, Sector (ITU-R), (2012, June 20, 2016), "Propagation data and prediction methods for the planning of indoor radiocommunications systems and radio local area networks in the frequency range 900 MHz to 100 GHz, Recommendation ITU-R P.1238-7 (02/2012),", Available: https://www.itu.int/rec/R-REC-P.1238/fr.

18. McNamara, D. A., C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction, Artech House, 1990.

19. Pathak, P., W. Burnside, and R. Marhefka, "A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface," IEEE Transactions on Antennas and Propagation, Vol. 28, 631-642, 1980.

20. Ghaddar, M., L. Talbi, G. Y. Delisle, and J. LeBel, "Deflecting-obstacle effects on signal propagation in the 60 GHz band," IEEE Transactions on Antennas and Propagation, Vol. 61, 403-414, 2013.

21. Han, C., A. O. Bicen, and I. F. Akyildiz, "Multi-ray channel modeling and wideband characterization for wireless communications in the terahertz band," IEEE Transactions on Wireless Communications, Vol. 14, 2402-2412, 2015.

22. El Azhari, M., M. Nedil, I. B. Mabrouk, K. Ghanem, and L. Talbi, "Characterization of an off-body channel at 2.45 GHz in an underground mine environment," Progress In Electromagnetics Research M, Vol. 43, 91-100, 2015.

23. Keysight Technologies, (June 20), Keysight 2-port and 4-port PNA-X Network Analyzer, N5247A-10 MHz to 67 GHz, Available: literature.cdn.keysight.com/litweb/pdf/N5247-90002.pdf.

24. ST Electronics, (June 20), MSAN-001 X-band Microwave Motion Sensor Module Application Note, Available: www.limpkin.fr/public/HB100/HB100_Microwave_Sensor_Application_Note.pdf.

25. Durgin, G. D. and T. S. Rappaport, "Theory of multipath shape factors for small-scale fading wireless channels," IEEE Transactions on Antennas and Propagation, Vol. 48, 682-693, 2000.

26. Kremo, H., "On the spatial and temporal coherence of wireless vehicular short range channels,", 2011.

27. Gans, M. J., "A power-spectral theory of propagation in the mobile-radio environment," IEEE Transactions on Vehicular Technology, Vol. 21, 27-38, 1972.

28. Clarke, R. H., "A statistical theory of mobile-radio reception," Bell System Technical Journal, Vol. 47, 957-1000, 1968.

29. Keysight Technologies, (June 20), "Applying error correction to network analyzer measurements,", Available: literature.cdn.keysight.com/litweb/pdf/5965-7709E.pdf.

30. Varela, M. S. and M. G. Sanchez, "RMS delay and coherence bandwidth measurements in indoor radio channels in the UHF band," IEEE Transactions on Vehicular Technology, Vol. 50, 515-525, 2001.

31. Pahlavan, K. and A. H. Levesque, "Measurement of wideband and UWB channel characteristics," Wireless Information Networks, 149-203, John Wiley & Sons, Inc., Ed., 2005.

32. Wang, Q., B. Ai, K. Guan, D. W. Matolak, R. He, and X. Zhou, "Ray-based statistical propagation modeling for indoor corridor scenarios at 15 GHz," International Journal of Antennas and Propagation, Vol. 2016, 12, 2016.

33. Valenzuela, R. A., O. Landron, and D. L. Jacobs, "Estimating local mean signal strength of indoor multipath propagation," IEEE Transactions on Vehicular Technology, Vol. 46, 203-212, 1997.

34. Rappaport, T. S., Wireless Communications: Principles and Practice, Prentice Hall PTR, 2002.

35. Deng, S., M. K. Samimi, and T. S. Rappaport, "28 GHz and 73 GHz millimeter-wave indoor propagation measurements and path loss models," 2015 IEEE International Conference on Communication Workshop (ICCW), 1244-1250, 2015.

36. Chan, K. M., et al., "6th Asia-Pacific congress on sports technology (APCST) indoor propagation investigation from a 2.4 GHz waist mounted beacon," Procedia Engineering, Vol. 60, 188-194, Jan. 1, 2013.

37. Maccartney, G. R., T. S. Rappaport, S. Sun, and S. Deng, "Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5G wireless networks," IEEE Access, Vol. 3, 2388-2424, 2015.

38. Goldsmith, A., Wireless Communications, Cambridge University Press, 2005.

© Copyright 2010 EMW Publishing. All Rights Reserved