PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 51 > pp. 101-111

ASSESSMENT OF MATERIALS FOR HIGH-SPEED PMSMS HAVING A TOOTH-COIL TOPOLOGY

By N. Uzhegov, N. Efimov-Soini, and J. Pyrhonen

Full Article PDF (645 KB)

Abstract:
In this paper, materials frequently used in high-speed (HS) electrical machines are assessed. Highspeed permanent magnet synchronous machines with a special tooth-coil topology serve as an example for the assessment. The lamination and rotor sleeve materials are compared taking into account their price, per unit losses, resistivity, and other factors. The resulting tables provide the electrical machine designer with a means to enhance the HS machine performance at low costs.

Citation:
N. Uzhegov, N. Efimov-Soini, and J. Pyrhonen, "Assessment of Materials for High-Speed PMSMs Having a Tooth-Coil Topology," Progress In Electromagnetics Research M, Vol. 51, 101-111, 2016.
doi:10.2528/PIERM16080604

References:
1. Chau, K.-T., W. Li, and C. H. T. Lee, "Challenges and opportunities of electric machines for renewable energy," Progress In Electromagnetics Research B, Vol. 42, 45-74, 2012.
doi:10.2528/PIERB12052001

2. Misron, N. B., S. Rizuan, R. N. Firdaus, C. Aravind Vaithilingam, H. Wakiwaka, and M. Nirei, "Comparative evaluation on power-speed density of portable permanent magnet generators for agricultural application," Progress In Electromagnetics Research, Vol. 129, 345-363, 2012.
doi:10.2528/PIER12050101

3. Gerada, D., A. Mebarki, N. Brown, C. Gerada, A. Cavagnino, and A. Boglietti, "High-speed electrical machines: Technologies, trends, and developments," IEEE Transactions on Industrial Electronics, Vol. 61, No. 6, 2946-2959, Jun. 2014.
doi:10.1109/TIE.2013.2286777

4. Pyrhönen, J., J. Nerg, P. Kurronen, and U. Lauber, "High-speed high-output solid-rotor induction-motor technology for gas compression," IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, 272-280, Jan. 2010.
doi:10.1109/TIE.2009.2021595

5. Touati, S., R. Ibtiouen, O. Touhami, and A. Djerdir, "Experimental investigation and optimization of permanent magnet motor based on coupling boundary element method with permeances network," Progress In Electromagnetics Research, Vol. 111, 71-90, 2011.
doi:10.2528/PIER10092303

6. Riemer, B., M. Lessmann, and K. Hameyer, "Rotor design of a high-speed permanent magnet synchronous machine rating 100,000 rpm at 10 kw," Proc. IEEE ECCE, 3978-3985, Sep. 2010.

7. Jiang, W. and T. Jahns, "Coupled electromagnetic-thermal analysis of electric machines including transient operation based on finite-element techniques," IEEE Transactions on Industry Applications, Vol. 51, No. 2, 1880-1889, Mar. 2015.
doi:10.1109/TIA.2014.2345955

8. Pesch, A., A. Smirnov, O. Pyrhönen, and J. Sawicki, "Magnetic bearing spindle tool tracking through m-synthesis robust control," IEEE ASME Transactions on Mechatronics, Vol. 20, No. 3, 1448-1457, Jun. 2015.
doi:10.1109/TMECH.2014.2344592

9. Bianchi, N., S. Bolognani, and F. Luise, "Potentials and limits of high-speed PM motors," IEEE Transactions on Industry Applications, Vol. 40, No. 6, 1570-1578, Nov. 2004.
doi:10.1109/TIA.2004.836173

10. Kolondzovski, Z., A. Arkkio, J. Larjola, and P. Sallinen, "Power limits of high-speed permanent-magnet electrical machines for compressor applications," IEEE Transactions on Energy Conversion, Vol. 26, No. 1, 73-82, Mar. 2011.
doi:10.1109/TEC.2010.2089459

11. Chen, M., K.-T. Chau, C. H. T. Lee, and C. Liu, "Design and analysis of a new axial-field magnetic variable gear using pole-changing permanent magnets," Progress In Electromagnetics Research, Vol. 153, 23-32, 2015.
doi:10.2528/PIER15072701

12. Uzhegov, N., J. Pyrhönen, and S. Shirinskii, "Loss minimization in high-speed permanent magnet synchronous machines with tooth-coil windings," Proc. IEEE IECON, 2960-2965, Nov. 2013.

13. Xu, G., L. Jian, W. Gong, and W. Zhao, "Quantitative comparison of flux-modulated interior permanent magnet machines with distributed and concentrated windings," Progress In Electromagnetics Research, Vol. 129, 109-123, 2012.
doi:10.2528/PIER12040901

14. Lim, M.-S., S.-H. Chai, J.-S. Yang, and J.-P. Hong, "Design and verification of 150-krpm pmsm based on experiment results of prototype," IEEE Transactions on Industrial Electronics, Vol. 62, No. 12, 7827-7836, Dec. 2015.
doi:10.1109/TIE.2015.2409804

15. Salonen, M. and M. Perttula, "Utilization of concept selection methods: A survey of finnish industry," Proc. ASME IDETC/CIE, 527-535, Sep. 2005.

16. Pyrhönen, J., V. Ruuskanen, J. Nerg, J. Puranen, and H. Jussila, "Permanent-magnet length effects in AC machines," IEEE Transactions on Magnetics, Vol. 46, No. 10, 3783-3789, Oct. 2010.
doi:10.1109/TMAG.2010.2050002

17. Uzhegov, N., J. Nerg, and J. Pyrhönen, "Design of 6-slot 2-pole high-speed permanent magnet synchronous machines with tooth-coil windings," Proc. XXIst ICEM, 2537-2542, Sep. 2014.

18. Borisavljevic, A., H. Polinder, and J. Ferreira, "On the speed limits of permanent-magnet machines," IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, 220-227, Jan. 2010.
doi:10.1109/TIE.2009.2030762

19. Zhao, W., M. Cheng, R. Cao, and J. Ji, "Experimental comparison of remedial single-channel operations for redundant flux-switching permanent-magnet motor drive," Progress In Electromagnetics Research, Vol. 123, 189-204, 2012.
doi:10.2528/PIER11110405

20. Binder, A. and T. Schneider, "High-speed inverter-fed ac drives," Proc. ACEMP’07 Int. Aegean Conf., 9-16, Sep. 2007.

21. Pugh, S., Creating Innovative Products Using Total Design: The Living Legacy of Stuart Pugh, edited by D. Clausing and R. Andrade, Addison-Wesley, New York, 1996.

22. Saaty, T. L., The Analytic Hierarchy Process, McGraw-Hill, New York, 1980.

23. Matzen, M., M. Alhajji, and Y. Demirel, "Chemical storage of wind energy by renewable methanol production: Feasibility analysis using a multi-criteria decision matrix," Energy, Vol. 93, 343-353, 2015.
doi:10.1016/j.energy.2015.09.043

24. Girones, V., S. Moret, F. Marechal, and D. Favrat, "Strategic energy planning for large-scale energy systems: A modelling framework to aid decision-making," Energy, Vol. 90, 173-186, 2015.
doi:10.1016/j.energy.2015.06.008

25. Thakker, A., J. Jarvis, M. Buggy, and A. Sahed, "3dcad conceptual design of the next-generation impulse turbine using the pugh decision-matrix," Materials and Design, Vol. 30, No. 7, 2676-2684, 2009.
doi:10.1016/j.matdes.2008.10.011

26. Ullman, D. G., The Mechanical Design Process, McGraw-Hill, New York, 2010.

27. Okudan, G. and S. Tauhid, "Concept selection methods - A literature review from 1980 to 2008," International Journal of Design Engineering, Vol. 1, No. 3, 243-277, 2008.
doi:10.1504/IJDE.2008.023764

28. Nasiri-Zarandi, R., M. Mirsalim, and A. Cavagnino, "Analysis, optimization, and prototyping of a brushless dc limited-angle torque-motor with segmented rotor pole tip structure," IEEE Transactions on Industrial Electronics, Vol. 62, No. 8, 4985-4993, Aug. 2015.
doi:10.1109/TIE.2015.2402115

29. Dziadak, B. and A. Michalski, "Evaluation of the hardware for a mobile measurement station," IEEE Transactions on Industrial Electronics, Vol. 58, No. 7, 2627-2635, Jul. 2011.
doi:10.1109/TIE.2010.2093478

30. Meyar-Naimi, H. and S. Vaez-ZAdeh, "Sustainability assessment of a power generation system using dsr-hns framework," IEEE Transactions on Energy Conversion, Vol. 28, No. 2, 327-334, Jun. 2013.
doi:10.1109/TEC.2013.2253610

31. Chedid, R., H. Akiki, and S. Rahman, "A decision support technique for the design of hybrid solar-wind power systems," IEEE Transactions on Energy Conversion, Vol. 13, No. 1, 76-83, Mar. 1998.
doi:10.1109/60.658207

32. Cogent, "Non-oriented electrical steel,", [Online]. Available: http://cogent-power.com/, 2016.

33. Senda, K., M. Namikawa, and Y. Hayakawa, "Electrical steels for advanced automobiles - Core materials for motors, generators, and high-frequency reactors," JFE Technical Report, Vol. 4, 67-73, 2004.

34. Tarter, R. E., Solid-state Power Conversion Handbook, John Wiley & Sons, New York, NY, 1993.

35. Nasar, S. A. and L. E. Unnewehr, Electromechanics and Electric Machines, John Wiley & Sons, New York, 1979.

36. Kolondzovski, Z., A. Belahcen, and A. Arkkio, "Comparative thermal analysis of different rotor types for a high-speed permanent-magnet electrical machine," IET Electric Power Applications, Vol. 3, No. 4, 279-288, Jul. 2009.
doi:10.1049/iet-epa.2008.0208

37. Clemens, S. L. and W. C. Faulkner, Engineered Materials Handbook, ASM, Metals Park OH, 1991.

38. Yon, J., P. Mellor, R. Wrobel, J. Booker, and S. Burrow, "Analysis of semipermeable containment sleeve technology for high-speed permanent magnet machines," IEEE Transactions on Energy Conversion, Vol. 27, No. 3, 646-653, Sep. 2012.
doi:10.1109/TEC.2012.2202232

39. Uzhegov, N., E. Kurvinen, J. Nerg, J. Pyrhönen, J. Sopanen, and S. Shirinskii, "Multidisciplinary design process of a 6-slot 2-pole high-speed permanent-magnet synchronous machine," IEEE Transactions on Industrial Electronics, Vol. 63, No. 2, 784-795, Feb. 2016.
doi:10.1109/TIE.2015.2477797


© Copyright 2010 EMW Publishing. All Rights Reserved