PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 52 > pp. 1-8

OPTIMAL DESIGN OF PHOTONIC BAND-GAP STRUCTURE BASED ON KRIGING SURROGATE MODEL

By H. Li, B. Zhu, and J. Chen

Full Article PDF (357 KB)

Abstract:
Toward an engineering optimization for photonic band-gap structures in waveguide filter, this paper presents an effective optimization method using Kriging surrogate model combing with semi-analytical spectral element method to maximize photonic band-gaps. Photonic crystals are assumed to be finite periodic structures composed of two dielectric materials with different permittivities. Kriging surrogate model is used to build an approximate function relationship between the photonic band-gaps and the design parameters of photonic crystals, replacing the expensive reanalysis for electromagnetic simulations of 3D periodic structure. The semi-analytical spectral element method is used to calculate the photonic band-gaps at different sampling points. Numerical results demonstrate that the proposed optimization method can effectively obtain maximum photonic band-gaps.

Citation:
H. Li, B. Zhu, and J. Chen, "Optimal Design of Photonic Band-Gap Structure Based on Kriging Surrogate Model," Progress In Electromagnetics Research M, Vol. 52, 1-8, 2016.
doi:10.2528/PIERM16091803

References:
1. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, 2008.

2. Fleming, J. G., S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, "All-metallic three-dimensional photonic crystals with a large infrared bandgap," Nature, Vol. 417, 52-55, 2002.
doi:10.1038/417052a

3. Bermel, P., C. Luo, L. Zeng, L. C. Kimerling, and D. Joannopoulos, "Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals," Optics Express, Vol. 15, No. 25, 16986-17000, 2007.
doi:10.1364/OE.15.016986

4. Knight, J. C., "Photonic crystal fibres," Nature, Vol. 424, No. 6950, 847-851, 2003.
doi:10.1038/nature01940

5. Fang, Y., Y. Ni, S. Y. Leo, C. Taylor, V. Basile, and P. Jing, "Reconfigurable photonic crystals enabled by pressure responsive shape-memory polymers," Nature Communications, Vol. 6, 7416, 2015.
doi:10.1038/ncomms8416

6. Hart, E. E., A. Sobester, K. Djidjeli, M. Molinari, K. S. Thomas, and S. J. Cox, "A geometry optimization framework for photonic crystal design," Photonics Nanostructures-Fundamentals and Applications, Vol. 10, 25-35, 2012.
doi:10.1016/j.photonics.2011.06.005

7. Wang, D., Z. Yu, Y. Liu, P. Lu, L. Han, H. Feng, X. Gao, and H. Ye, "The optimal structure of two dimensional photonic crystals," Optics Express, Vol. 19, 19346-19353, 2011.
doi:10.1364/OE.19.019346

8. Meng, F., X. Huang, and B. Jia, "Bi-directional evolutionary optimiztion for photonic band gap structures," Journl of Computational Physics, Vol. 302, 393-404, 2015.
doi:10.1016/j.jcp.2015.09.010

9. Li, H. and X. Wang, "Design optimization of balloon-expandable coronary stent," Structural and Multidisciplinary Optimization, Vol. 48, 837-847, 2013.
doi:10.1007/s00158-013-0926-5

10. Chen, J., B. Zhu, W. Zhong, and Q. H. Liu, "A semi-analytical spectral element method for the analysis of 3-D layered structures," IEEE transactions Microwave Theory and Techniques, Vol. 59, No. 1, 1-8, 2011.
doi:10.1109/TMTT.2010.2090408

11. Zhong, W., "On precise integration method," Journal of Computational Applied Mathematics, Vol. 163, No. 204, 59-78, 2004.

12. Meurant, D., "A review on the inverse of symmetric tridiagonal and block tridiagonal matrices," SIAM Journal Matrix Analysis and Applications, Vol. 13, 707-728, 1992.
doi:10.1137/0613045

13. Joseph, V. R. and Y. Hung, "Orthogonal maximin latin hypercube designs," Statistica Sinica, Vol. 18, 171-187, 2008.


© Copyright 2010 EMW Publishing. All Rights Reserved