PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 53 > pp. 141-151

DOA ESTIMATION IN SOLVING MIXED NON-CIRCULAR AND CIRCULAR INCIDENT SIGNALS BASED ON THE CIRCULAR ARRAY

By M. Wu and N. Yuan

Full Article PDF (693 KB)

Abstract:
Non-circular properties of non-circular signals can be used to improve the performance of the direction-of-arrival (DOA) estimation. However, most ready-made algorithms are not applicable to the general case in which both non-circular and circular signals exist. In this paper, we present a novel DOA estimation algorithm for mixed signals, namely MS-MUSIC (Mixed Signals - Multiple Signals Classification), which can deal with the two kinds of signals simultaneously. And on this basis, we derive the Cramer-Rao Lower Bound (CRLB) of the azimuth and elevation estimation. The effectiveness of the algorithm is confirmed by the simulation results. Meanwhile, it acquires higher accuracy than the traditional algorithms.

Citation:
M. Wu and N. Yuan, "DOA Estimation in Solving Mixed Non-Circular and Circular Incident Signals Based on the Circular Array," Progress In Electromagnetics Research M, Vol. 53, 141-151, 2017.
doi:10.2528/PIERM16092105

References:
1. Xu, Y. and Z. Liu, "Noncircularity-exploitation in direction estimation of noncircular signals with an acoustic vector-sensor," Digital Signal Processing, Vol. 18, 777-796, 2008, ISSN: 1051-2004, DOI: 10.1016/j.dsp.2007.10.008.
doi:10.1016/j.dsp.2007.10.008

2. Longstaff, I. D., et al., "Directional properties of circular arrays," IEE Proc., Vol. 114, No. 6, 713-718, 1967, DOI: 10.1049/piee.1967.0142.

3. Mathews, C. P. and M. D. Zoltowski, "Eigenstructure techniques for 2-D angle estimation with uniform circular arrays," IEEE Transactions on Signal Processing, Vol. 42, No. 9, 2395-2407, 1994, ISSN: 1053-587X, DOI: 10.1109/78.317861.
doi:10.1109/78.317861

4. Abeida, H. and J. P. Delmas, "MUSIC-like estimation of direction of arrival for noncircular sources," IEEE Transactions on Signal Processing, Vol. 54, No. 7, 2678-2690, 2006, ISSN: 1053-587X, DOI: 10.1109/TSP.2006.873505.
doi:10.1109/TSP.2006.873505

5. Guo, R., X.-P. Mao, S.-B. Li, Y.-M. Wang, and X.-H. Wang, "A fast DOA estimation algorithm based on polarization MUSIC," Radioengineering, Vol. 24, No. 1, 214-225, 2015, DOI: 10.13164/re.2015.0214.
doi:10.13164/re.2015.0214

6. Shi, Y., L. Huang, C. Qian, and H. C. So, "Direction-of-Arrival estimation for noncircular sources via structured least squares-based ESPRIT using three-axis crossed array," IEEE Transactions on Aerospace and Electroninc Systems, Vol. 51, No. 2, 1267-1278, 2015, ISSN: 0018-9251, DOI: 10.1109/TAES.2015.140003.
doi:10.1109/TAES.2015.140003

7. Pan, Y., X. Zhang, S. Xie, J. Huang, and N. Yuan, "An ultra-fast DOA estimator with circular array interferometer using lookup table method," Radioengineering, Vol. 24, No. 3, 850-856, 2015, DOI:10.13164/re.2015.0850.
doi:10.13164/re.2015.0850

8. Tomic, S., M. Beko, and R. Dinis, "Distributed RSS-AoA based localization with unknown transmit powers," IEEE Wireless Communications Letters, Vol. PP, No. 99, 1-1, 2016, DOI: 10.1109/LWC.2016.2567394.

9. Li, J. and R. T. Compton, "Angle estimation using a polarization sensitive array," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 10, 1539-1543, 1991, ISSN: 0018-926X, DOI:10.1109/8.97389.
doi:10.1109/8.97389

10. Deschamps, G. A., "Techniques for handling elliptically polarized waves with special reference to antennas: Part II --- Geometrical representation of the polarization of a plane electromagnetic wave," Proceedings of the I.R.E., Vol. 39, 540-544, 1951, DOI:10.1109/JRPROC.1951.233136.
doi:10.1109/JRPROC.1951.233136

11. Nehorai, A. and E. Paldi, "Vector-sensor array processing for electromagnetic source localization," IEEE Transactions on Signal Processing, Vol. 42, No. 2, 376-398, 1994, ISSN: 1053-587/94, DOI: 10.1109/78.275610.
doi:10.1109/78.275610

12. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1986, ISSN: 0018-926X, DOI: 10.1109/TAP.1986.1143830.
doi:10.1109/TAP.1986.1143830

13. Bellman, R., Introduction to Matrix Analysis, 2nd Ed., The RAND Corporation, New York, USA, 1997, ISBN: 0-89871-3994.

14. Stoica, P. and A. Nehorai, "MUSIC, maximum likelihood, and Cramer-Rao bound," IEEE Transactions on Acoustics Speech and Signal Processing, Vol. 37, No. 5, 720-741, ISSN: 0096-3518, DOI: 10.1109/29.17564, 1989.
doi:10.1109/29.17564

15. Stoica, P. and A. Nehorai, "MUSIC, maximum likelihood, and Cramer-Rao bound: Further results and comparisons," IEEE Transactions on Acoustics SPEFCH and Signal Processing, Vol. 38, No. 12, 2140-2150, 1990, ISSN: 0096-3518, DOI: 10.1109/29.61541.
doi:10.1109/29.61541

16. Tomic, S., M. Beko, and R. Dinis, "RSS-based localization in wireless sensor networks using convex relaxation: Noncooperative and cooperative schemes," IEEE Transactions on Vehicular Technology, Vol. 64, No. 5, 2037-2050, 2015, DOI: 10.1109/TVT.2014.2334397.
doi:10.1109/TVT.2014.2334397


© Copyright 2010 EMW Publishing. All Rights Reserved