PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 52 > pp. 169-179

ALTERNATIVE REPRESENTATION OF GREEN'S FUNCTION FOR ELECTRIC FIELD ON SURFACES OF THIN VIBRATORS

By Y. M. Penkin, V. A. Katrich, and M. V. Nesterenko

Full Article PDF (411 KB)

Abstract:
An alternative representation of a Green function for electric fields on surfaces of thin impedance vibrators is proposed. The representation can be applied in software packages for simulation of RF and microwave devices. Advantages of the approach were demonstrated by analyzing the well-known problem of a thin symmetrical horizontal vibrator above a perfectly conducting plane. For a half-wave vibrator, numerical estimates of an effective external induced impedance were made for various distances between the vibrator and the plane. A possibility to realize a distribution of intrinsic impedance on the vibrator capable to compensate of the plane influence was also analyzed.

Citation:
Y. M. Penkin, V. A. Katrich, and M. V. Nesterenko, "Alternative Representation of Green's Function for Electric Field on Surfaces of Thin Vibrators," Progress In Electromagnetics Research M, Vol. 52, 169-179, 2016.
doi:10.2528/PIERM16102604

References:
1. Khizhnyak, N. A., Integral Equations of Macroscopical Electrodynamics, Naukova dumka, Kiev, 1986 (in Russian).

2. Levin, H. and J. Schwinger, "On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen," Commun. Pure Appl. Math., 355-391, 1950.
doi:10.1002/cpa.3160030403

3. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953.

4. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New York, 1960.

5. Van Bladel, J., "Some remarks on Green’s dyadic for infinite space," IRE Trans. Antennas and Propagat., Vol. 9, 563-566, 1961.
doi:10.1109/TAP.1961.1145064

6. Markov, G. T. and B. A. Panchenko, "Tensor Green functions of rectangular waveguides and resonators," Izvestiya Vuzov, Radiotechnika, Vol. 7, 34-41, 1964 (in Russian).

7. Tai, C. T., Dyadic Green’s Function in Electromagnetic Theory, Intex Educ. Publ., Scranton, 1971.

8. Tikhonov, A. N. and A. A. Samarsky, Equations of Mathematical Physics, Nauka, Moscow, 1977 (in Russian).

9. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall, Inc., New Jersey, 1973.

10. Penkin, Yu. M. and V. A. Katrich, Excitation of Electromagnetic Waves in the Volumes with Coordinate Boundaries, Fakt, Kharkov, 2003 (in Russian).

11. Nesterenko, M. V., V. A. Katrich, Yu. M. Penkin, and S. L. Berdnik, "Analytical methods in theory of slot-hole coupling of electrodynamic volumes," Progress In Electromagnetics Research, Vol. 70, 79-174, 2007.
doi:10.2528/PIER06121203

12. Nesterenko, M. V., D. Yu. Penkin, V. A. Katrich, and V. M. Dakhov, "Equation solution for the current in radial impedance monopole on the perfectly conducting sphere," Progress In Electromagnetics Research B, Vol. 19, 95-114, 2010.
doi:10.2528/PIERB09111105

13. Nesterenko, M. V., "Analytical methods in the theory of thin impedance vibrators," Progress In Electromagnetics Research B, Vol. 21, 299-328, 2010.

14. Vasylchenko, A., Y. Schols, W. De Raedt, and G. A. E. Vandenbosch, "A benchmarking of six software packages for full-wave analysis of microstrip antennas," Proceeding of the 2nd European Conference on Antennas and Propagation, EuCAP'2007, Edinburgh, UK, Nov. 11-16, 2007.

15. Ansoft Corporation, HFSS v. 10.1.1 User Manual, Jul. 2006, http://www.ansoft.com.

16. CST GmbH., CST Microwave Studio v. 2006B, www.cts.com.

17. Agilent Technologies, EEsof EDA, Momentum, http://eesof.tm.agilent.com/products/momentum_main.html.

18. EMSS - EM Software & Systems Ltd, FEKO Suite 5.2 User Manual, Jan. 2006, http:Hwww.emss.co.za.

19. Zeland Software, Inc., IE3D v. 11.2 User Manual, Jan. 2006, http: Hwww.zeland.com.

20. Nesterenko, M. V., V. A. Katrich, Yu.M. Penkin, V.M. Dakhov, and S. L. Berdnik, Thin Impedance Vibrators. Theory and Applications, Springer Science+Business Media, New York, 2011.
doi:10.1007/978-1-4419-7850-9

21. King, R. W. P., The Theory of Linear Antennas, Harv. Univ. Press, Cambr., MA, 1956.
doi:10.4159/harvard.9780674182189

22. Pocklington, H. C., "Electrical oscillations in wires," Proc. Cambr. Phil. Soc., Vol. 9, Pt. VII, 324-332, 1897.

23. Mittra, R., Computer Techniques for Electromagnetics, Pergamon, New York, 1973.

24. Penkin, Yu. M., V. A. Katrich, and M. V. Nesterenko, "Development of fundamental theory of thin impedance vibrators," Progress In Electromagnetics Research M, Vol. 45, 185-193, 2016.
doi:10.2528/PIERM15120105

25. Fikioris, G. and T. T. Wu, "On the application of numerical methods to Hallen's equation," IEEE Trans. Antennas Propagat., Vol. 49, 383-392, 2001.
doi:10.1109/8.918612

26. King, R. W. P., G. Fikioris, and R. B. Mack, Cylindrical Antennas and Arrays, Cambridge University Press, Cambridge, UK, 2002.
doi:10.1017/CBO9780511541100

27. King, R. W. P., E. A. Aronson, and C. W. Harrison, "Determination of the admittance and effective length of cylindrical antennas," Radio Science, Vol. 1, No. 7, 835-850, 1966.
doi:10.1002/rds196617835

28. Sommerfeld, L., "Uber die ausbereitung electromagnetisher wellen in der jdrahtlosen telegrafie," Annalen der Physik, Vol. 28, 665, 1919.

29. Markov, G. T. and D. M. Sazonov, Antennas, Energiya, Moscow, 1975 (in Russian).

30. Eisenberg, H., "Short-wave antenna," Radio and Svyaz, Moscow, 1985 (in Russian).

31. Feinberg, E. L., Propagation of Radio Waves over the Earth Surface, Nauka, Moscow, 1999 (in Russian).

32. Balanis, C. A., Modern Antenna Handbook, John Willey & Sons, Hoboken, New Jersey, 2008.
doi:10.1002/9780470294154


© Copyright 2010 EMW Publishing. All Rights Reserved