Vol. 55

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-03-27

Numerical Simulation of Fragment-Type Antenna by Using Finite Difference Time Domain (FDTD)

By Lixia Yang, Xiao-Dong Ding, Da-Wei Ding, and Jing Xia
Progress In Electromagnetics Research M, Vol. 55, 133-142, 2017
doi:10.2528/PIERM16111103

Abstract

Finite Difference Time Domain (FDTD) method is widely used in the simulation of various kinds of antennas. In this paper, research on the numerical simulation of the fragment-type antenna by using FDTD is conducted. The fragment-type antenna structures with different cell sizes and different overlapping sizes are simulated and measured. The validity of the numerical simulation of the fragment-type antenna by using FDTD is verified through the comparison between the simulated and measured return losses. In addition, its efficiency in terms of computation time shows great potential in engineering applications, especially when the design matrix is large enough.

Citation


Lixia Yang, Xiao-Dong Ding, Da-Wei Ding, and Jing Xia, "Numerical Simulation of Fragment-Type Antenna by Using Finite Difference Time Domain (FDTD)," Progress In Electromagnetics Research M, Vol. 55, 133-142, 2017.
doi:10.2528/PIERM16111103
http://www.jpier.org/PIERM/pier.php?paper=16111103

References


    1. Choo, H. and H. Ling, "Design of broadband and dual-band microstrip antennas on a high-dielectric substrate using a genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 150, No. 3, 137-142, Jun. 2003.

    2. Choo, H., A. Hutani, and L. C. Trintinalia, "Shape optimisation of broadband microstrip antennas using genetic algorithm," IET Electronics Letters, Vol. 36, No. 25, 2057-2058, Dec. 2000.
    doi:10.1049/el:20001452

    3. Alatan, L., M. I. Aksun, and K. Leblebicioglu, "Use of computationally efficient method of moments in the optimization of printed antennas," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 4, 725-732, Apr. 1999.
    doi:10.1109/8.768813

    4. Pringle, L. N., P. H. Harms, and S. P. Blalock, "A reconfigurable aperture antenna based on switched links between electrically small metallic patches," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1434-1445, Jun. 2004.
    doi:10.1109/TAP.2004.825648

    5. Soontornpipit, P., C. M. Furse, and C. C. You, "Miniaturized biocompatible microstrip antenna using genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 6, 1939-1945, Jun. 2005.
    doi:10.1109/TAP.2005.848461

    6. John, M. and M. J. Ammann, "Wideband printed monopole design using a genetic algorithm," IEEE Antennas & Wireless Propagation Letters, Vol. 6, No. 11, 447-449, Sep. 2007.
    doi:10.1109/LAWP.2007.891962

    7. Ding, D. W. and G. Wang, "MOEA/D-GO for fragmented antenna design," Progress In Electromagnetics Research, Vol. 33, 1-5, Oct. 2013.

    8. John, M. and M. J. Ammann, "Design of a wide-band printed antenna using a genetic algorithm on an array of overlapping sub-patches," IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials, 92-95, 2006.
    doi:10.1109/IWAT.2006.1608983

    9. Herscovici, N., J. Ginn, and T. Donisi, "A fragmented aperture-coupled microstrip antenna," IEEE Antennas and Propagation Society International Symposium, 1-4, San Diego, Jul. 2008.

    10. Jin, Z., H. Yang, and X. Tang, "Parameters and schemes selection in the optimization of the fragment-type tag antenna," Third International Joint Conference on Computational Science and Optimization IEEE Computer Society, Vol. 2, 259-262, May 2010.

    11. Goojo, K. and Y. C. Chung, "Optimization of UHF RFID tag antennas using a genetic algorithm," IEEE Antennas and Propagation Society International Symposium, 2087-2090, Jul. 9-14, 2006.

    12. Jin, Z., H. Yang, X. Tang, and J. Mao, "Impedance analysis of the fragment-type tag antenna using FDTD," International Symposium on Antennas, IEEE Transactions on Antennas and Propagation, 260-262, Nov. 2008.

    13. Cummer, S. A., "A simple, nearly perfectly matched layer for general electromagnetic media," IEEE Microwave & Wireless Components Letters, Vol. 13, No. 3, 128-130, Apr. 2003.
    doi:10.1109/LMWC.2003.810124

    14. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms and method of moments (GA/MOM) for the design of integrated antennas," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 10, 1606-1614, Oct. 1999.
    doi:10.1109/8.805906

    15. Sheen, D. M., S. M. Ali, and M. D. Abouzahra, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," IEEE Transactions on Microwave Theory & Techniques, Vol. 8, No. 7, 849-857, Jun. 1990.
    doi:10.1109/22.55775

    16. Merulla, E. J. and R. Bansal, "Optimized design and fabrication of a fragmented wire antenna," IEEE Sarnoff Symposium, 1-4, Sarnoff, Apr. 28-30, 2008.