Vol. 54
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-02-01
Higher Radial Modes of Azimuthal Surface Waves in Cylindrical Waveguides Without External Magnetic Field
By
Progress In Electromagnetics Research M, Vol. 54, 1-7, 2017
Abstract
The properties of higher order radial modes of electromagnetic azimuthal surfacetype waves (ASW) which propagate in partially plasma-filled cylindrical waveguides without external magnetic field are analyzed using analytical and numerical techniques. For a waveguide with plasma surrounded by dielectric material and encased in metal, the eigenfrequencies for higher order radial modes are obtained. It is found that the ASW higher radial modes propagate with shorter vacuum wavelength than the zero-th order radial modes and that the more favourable conditions for higher order radial mode propagation are for ASW's with larger azimuthal wavenumber in waveguides with wider dielectric layer and larger dielectric constant. A further salient feature of ASW higher radial modes is that a change in plasma waveguide parameters causes a drastic change in ASW eigenfrequency in contrast to the zero-th order modes which have a smoother frequency variation with effective wavenumber.
Citation
Igor O. Girka, Igor V. Omelchenko, and Richard D. Sydora, "Higher Radial Modes of Azimuthal Surface Waves in Cylindrical Waveguides Without External Magnetic Field," Progress In Electromagnetics Research M, Vol. 54, 1-7, 2017.
doi:10.2528/PIERM16112103
References

1. Girka, V., I. Girka, and M. Thumm, Surface Flute Waves in Plasmas: Theory and Applications, Springer, Switzerland, 2014.
doi:10.1007/978-3-319-02027-3

2. Gradov, O. M. and L. Stenflo, "Linear theory of a cold bounded plasma," Physics Reports - Review Section of Phys. Lett., Vol. 94, 111-137, 1983.

3. Gradov, O. M. and L. Stenflo, "Theory of nonlinear plasma surface waves," Journal of Plasma Physics, Vol. 65, 73-77, 2001.
doi:10.1017/S0022377801008996

4. Kudrin, A. V., E. Y. Petrov, G. A. Kyriacou, and T. M. Zaboronkova, "Insulated cylindrical antenna in a cold magnetoplasma," Progress In Electromagnetics Research, Vol. 53, 135-166, 2005.
doi:10.2528/PIER04090101

5. Alexeff, I., T. Anderson, E. Farshi, et al. "Recent results for plasma antennas," Physics of Plasmas, Vol. 15, 057104, 2008.
doi:10.1063/1.2919157

6. Anderson, T., Plasma Antennas, Artech House, Boston, London, 2011.

7. Aliev, Y. M., H. Schluter, and A. Shivarova, Guided-wave-produced Plasmas, Springer, New-York, 2000.
doi:10.1007/978-3-642-57060-5

8. Sugai, H., I. Ghanashev, and M. Nagatsu, "High-density flat plasma production based on surface waves," Plasma Sources Science and Technology, Vol. 7, 192-205, 1998.
doi:10.1088/0963-0252/7/2/014

9. Ederra, I., J. C. Iriarte, R. Gonzalo, and P. de Maagt, "Surface waves of finite size electromagnetic band gap woodpile structures," Progress In Electromagnetics Research B, Vol. 28, 19-34, 2011.

10. Anders, A., "Metal plasmas for the fabrication of nanostructures," Physics D: Applied Physics, Vol. 40, 2272-2284, 2007.
doi:10.1088/0022-3727/40/8/S06

11. Morrow, R., D. R. McKenzie, and M. M. Bilek, "Electric field effects on adsorption/desorption of proteins and colloidal particles on a gold film observed using surface plasmon resonance," Physica B: Condensed Matter, Vol. 394, 203-207, 2007.
doi:10.1016/j.physb.2006.12.054

12. Feltis, B. N., B. A. Sexton, F. L. Glenn, et al. "A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents," Biosensors and Bioelectronics, Vol. 23, 1131-1136, 2008.
doi:10.1016/j.bios.2007.11.005

13. Girka, V. O., I. O. Girka, and R. D. Sydora, "Azimuthally non-symmetric surface waves propagating in metal waveguides filled with isotropic plasma," Progress In Electromagnetics Research B, Vol. 61, 87-98, 2014.
doi:10.2528/PIERB14062902

14. Girka, V. O., I. O. Girka, A. N. Kondratenko, and V. I. Tkachenko, "Azimuthal surface waves of magnetoactive plasma wavequides," Soviet Journal of Communications Technology and Electronics, Vol. 33, 37-41, 1988.

15. Girka, V. O. and I. O. Girka, "Coupled azimuthal surface waves in a nonuniform current - carrying plasma cylinder," Soviet Journal of Communications Technology and Electronics, Vol. 37, 23-29, 1992.

16. Girka, V. O. and I. O. Girka, "Influence of plasma inhomogeneity on the spectra of azimuthal surface waves," Radiophysics and Quantum Electronics, Vol. 33, 516-517, 1990.

17. Girka, V. O. and I. O. Girka, "Azimuthal surface waves in a nonuniform plasma cylinder," Radiophysics and Quantum Electronics, Vol. 34, 324-328, 1991.
doi:10.1007/BF01080766

18. Girka, V. O. and I. O. Girka, "Asymmetric long-wavelength surface modes of isotropic plasma waveguides," Plasma Physics Reports, Vol. 28, 682-689, 2002.
doi:10.1134/1.1501325

19. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, Washington, 1972.