Vol. 55

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-03-23

Almost Periodic Lumped Elements Structure Modeling Using Iterative Method: Application to Photonic Jets and Planar Lenses

By Mohamed Karim Azizi, Henri Baudrand, Taieb Elbellili, and Ali Gharsallah
Progress In Electromagnetics Research M, Vol. 55, 121-132, 2017
doi:10.2528/PIERM16121906

Abstract

In this work, we show that it is possible to produce a planar electromagnetic jet using a flat structure consisting of elementary cells based on lumped elements and fed with a source line. A combination of elementary cells may represent a gradient index, locating the electromagnetic energy in a small area, consisting of a few cells and having a size of about 0.75λ. The theoretical framework of the study is based on the Wave Concept Iterative Process method (WCIP) formulated in both spectral and spatial domains. An analogy with an optical model based on optical paths equality enables predicting the location of formation of this spot. The use of such a system can provide solutions for the development of new kinds of applications such as engraving sub-wavelength, data storage, improved scalpel optics for ultra-precise laser surgery, and detection of cancer.

Citation


Mohamed Karim Azizi, Henri Baudrand, Taieb Elbellili, and Ali Gharsallah, "Almost Periodic Lumped Elements Structure Modeling Using Iterative Method: Application to Photonic Jets and Planar Lenses," Progress In Electromagnetics Research M, Vol. 55, 121-132, 2017.
doi:10.2528/PIERM16121906
http://www.jpier.org/PIERM/pier.php?paper=16121906

References


    1. Chen, Z., A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express, Vol. 12, No. 7, 1214-1220, 2004.
    doi:10.1364/OPEX.12.001214

    2. Kim, M.-S., T. Scharf, S. M¨uhlig, C. Rockstuhl, and H. P. Herzig, "Engineering photonic nanojets," Opt. Express, Vol. 19, No. 11, 10206, 2011.
    doi:10.1364/OE.19.010206

    3. Wang, Z., W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, "Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope," Nat. Commun., Vol. 2, 218, 2011.
    doi:10.1038/ncomms1211

    4. Dantham, V. R., P. B. Bisht, and C. K. R. Namboodiri, "Enhancement of Raman scattering by two orders of magnitude using photonic nanojet of a microsphere," Journal of Applied Physics, Vol. 109, No. 10, 2011.
    doi:10.1063/1.3590156

    5. Kong, S.-C., A. Sahakian, A. Taflove, and V. Backman, "Photonic nanojet-enabled optical data storage," Opt. Express, Vol. 16, No. 18, 13713, 2008.
    doi:10.1364/OE.16.013713

    6. Heifetz, A., S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, "Photonic nanojets," Journal of Computational and Theoretical Nanoscience, Vol. 6, No. 9, 1979-1992, 2009.
    doi:10.1166/jctn.2009.1254

    7. Chen, Z., A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express, Vol. 12, No. 7, 1214-1220, 2004.
    doi:10.1364/OPEX.12.001214

    8. Li, X., Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express, Vol. 13, No. 2, 526-533, 2005.
    doi:10.1364/OPEX.13.000526

    9. Lecler, S., Y. Takakura, and P. Meyrueis, "Properties of a three-dimensional photonic jet," Opt. Lett., Vol. 30, No. 19, 2641-2643, 2005.
    doi:10.1364/OL.30.002641

    10. Itagi, A. V. and W. A. Challener, "Optics of photonic nanojets," J. Opt. Soc. Am. A. Opt. Image Sci. Vis., Vol. 22, No. 12, 2847-58, 2005.
    doi:10.1364/JOSAA.22.002847

    11. Ammar, N., T. Aguili, H. Baudrand, B. Sauviac, and B. Ounnas, "Wave concept iterative process method for electromagnetic or photonic jets: Numerical and experimental results," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 1, 2015.
    doi:10.1109/TAP.2015.2486800

    12. Ju, D., H. Pei, Y. Jiang, and X. Sun, "Controllable and enhanced nanojet effects excited by surface plasmon polariton," Appl. Phys. Lett., Vol. 102, 171109, 2013.
    doi:10.1063/1.4802958

    13. Khaleque, A. and Z. Li, "Tailoring the properties of photonic nanojets by changing the material and geometry of the concentrator," Progress In Electromagnetics Research Letters, Vol. 48, 7-13, 2014.
    doi:10.2528/PIERL14052108

    14. Chen, Z., X. Li, A. Taflove, and V. Backman, "Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks," Appl. Opt., Vol. 45, No. 4, 633-638, 2006.
    doi:10.1364/AO.45.000633

    15. Godi, G., R. Sauleau, and D. Thouroude, "Performance of reduced size substrate lens antennas for millimeter-wave communications," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1278-1286, 2005.
    doi:10.1109/TAP.2005.844420

    16. Boriskin, A. V., A. Rolland, R. Sauleau, and A. I. Nosich, "Assessment of FDTD accuracy in the compact hemielliptic dielectric lens antenna analysis," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 758-764, 2008.
    doi:10.1109/TAP.2008.916950

    17. Azizi, M. K., N. Sboui, F. Choubani, and A. Gharsallah, "A novel design of photonic band gap by F.W.C.I.P method," 2008 2nd International Conference on Signals, Circuits and Systems, SCS 2008, 2008.

    18. Latrach, L., M. Karim Azizi, A. Gharsallah, and H. Baudrand, "Study of one dimensional almost periodic structure using a novel WCIP method," International Journal on Communications Antenna and Propagation (I.Re.C.A.P.), Vol. 4, No. 6, December 2014, ISSN 2039–5086.

    19. Baudrand, H. and R. S. N'gongo, "Applications of wave concept iterative procedure," Recent Res. Devel. Microwave Theory Tech., Vol. 1, 187-197, 1999.

    20. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    21. Baudrand, H., M. K. Azizi, and M. Titaouine, General Principles of the Wave Concept Iterative Process, 1-42, John Wiley & Sons, Inc, September 2016.

    22. Baudrand, H., N. Raveu, and M. Titaouine, The Wave Concept in Electromagnetism and Circuits: Theory and Applications, ISTE Ltd 2016, ISTE Ltd and John Wiley & Sons, Inc, September 2016.
    doi:10.1002/9781119332701

    23. Azizi, M. K., L. Latrach, N. Raveu, A. Gharsallah, and H. Baudrand, "A new approach of almost periodic lumped elements circuits by an iterative method using auxiliary sources," Am. J. Appl. Sci., Vol. 10, No. 11, 1457-1472, 2013.
    doi:10.3844/ajassp.2013.1457.1472