Vol. 55

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-04-09

SAR Imaging on HEO Satellites with an Improved Frequency-Domain Algorithm

By Po-Chih Chen and Jean-Fu Kiang
Progress In Electromagnetics Research M, Vol. 55, 189-201, 2017
doi:10.2528/PIERM17011301

Abstract

The possibility of employing highly-elliptical-orbit (HEO) satellites for SAR imaging is investigated. A constellation of two satellites in the Tundra orbits, which are capable of covering all the high-latitude areas, are chosen as the platforms for SAR imaging. The received signals are processed with an improved frequency-domain algorithm (FDA) to reconstruct the image. Simulation results verify that the proposed method can produce better SAR images with less computational load and memory than the conventional FDA.

Citation


Po-Chih Chen and Jean-Fu Kiang, "SAR Imaging on HEO Satellites with an Improved Frequency-Domain Algorithm," Progress In Electromagnetics Research M, Vol. 55, 189-201, 2017.
doi:10.2528/PIERM17011301
http://www.jpier.org/PIERM/pier.php?paper=17011301

References


    1. Velde, R. V. D., M. S. Salama, O. A. Eweys, J. Wen, and Q. Wang, "Soil moisture mapping using combined active/passive microwave observations over the east of the Netherlands," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 8, No. 9, 4355-4372, Sep. 2015.
    doi:10.1109/JSTARS.2014.2353692

    2. Reiche, J., C. M. Souza, D. H. Hoekman, J. Verbesselt, H. Persaud, and M. Herold, "Feature level fusion of multi-temporal ALOS PALSAR and landsat data for mapping and monitoring of tropical deforestation and forest degradation," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 6, No. 5, 2159-2173, Oct. 2013.
    doi:10.1109/JSTARS.2013.2245101

    3. Lucas, R., et al., "An evaluation of the ALOS PALSAR L-band backscatter above ground biomass relationship Queensland, Australia: Impacts of surface moisture condition and vegetation structure," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 3, No. 4, 576-595, Dec. 2010.
    doi:10.1109/JSTARS.2010.2086436

    4. Zhao, B., Y. Han, W. Gao, Y. Luo, and X. Han, "A new imaging algorithm for geosynchronous SAR based on the fifth-order Doppler parameters," Progress In Electromagnetics Research B, Vol. 55, 195-215, 2013.
    doi:10.2528/PIERB13072803

    5. Hu, C., Z. Liu, and T. Long, "An improved CS algorithm based on the curved trajectory in geosynchronous SAR," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 5, No. 3, 795-808, Jun. 2012.
    doi:10.1109/JSTARS.2012.2188096

    6. Li, D.-X., M.-Q. Wu, Z.-Y. Sun, F. He, and Z. Dong, "Modeling and processing of two-dimensional spatial-variant geosynchronous SAR data," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 8, No. 8, 3999-4010, Aug. 2015.
    doi:10.1109/JSTARS.2015.2418814

    7. Hu, C., Y. Tian, T. Zeng, T. Long, and X. Dong, "Adaptive secondary range compression algorithm in geosynchronous SAR," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 9, No. 4, 1397-1413, Apr. 2016.
    doi:10.1109/JSTARS.2015.2477317

    8. Hu, C., T. Long, Z. Liu, T. Zeng, and Y. Tian, "An improved frequency domain focusing method in geosynchronous SAR," IEEE Trans. Geosci. Remote Sensing, Vol. 52, No. 9, 5514-5528, Sep. 2014.
    doi:10.1109/TGRS.2013.2290133

    9. Ding, Z., B. Shu, W. Yin, T. Zeng, and T. Long, "A modified frequency domain algorithm based on optimal azimuth quadratic factor compensation for geosynchronous SAR imaging," IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, Vol. 9, No. 3, 1119-1131, Mar. 2016.
    doi:10.1109/JSTARS.2015.2497000

    10. Rodon, J. R., A. Broquetas, A. M. Guarnieri, and F. Rocca, "A Ku-band geosynchronous synthetic aperture radar mission analysis with medium transmitted power and medium-sized antenna," IEEE Int. Geosci. Remote Sensing Symp., 2456-2459, Vancouver, BC, Canada, Jul. 2011.

    11. Wood, L., Y. Lou, and O. Olusola, "Revisiting elliptical satellite orbits to enhance the O3b constellation,", https://arxiv.org/ftp/arxiv/papers /1407/1407.2521.pdf.

    12. Ilcev, S. D., Global Mobile Satellite Communications for Maritime, Land and Aeronautical Applications, Springer, 2005.

    13. Ilcev, S. D., "Highly elliptical orbits (HEO) for high latitudes and polar coverage," IEEE Int. Crimean Conf. Microwave Telecom. Tech., 396-399, Sevastopol, Crimea, Ukraine, Sep. 2010.

    14. Cavallaro, G., D. Pham-Minh, and M. Bousquet, "HEO constellation design for tactical communications," IEEE Euro. Conf. Satellite Telecom., Toulouse, France, Oct. 2012.

    15. Tsimbal, M. and S. Panko, "Features of the HEO satellite communication systems," IEEE Int. Siberian Conf. Control Commun., Omsk, Russia, May 2015.

    16. AgrawaIt, B. N., "High latitude communications satellite,", http://digitalcommons.usu.edu/cgi/viewcontent.cgi article=2770 & context=smallsat.

    17. Chen, P.-C. and J.-F. Kiang, "An improved range-Doppler algorithm for SAR imaging at high squint angles," Progress In Electromagnetics Research M, Vol. 53, 41-52, 2017.
    doi:10.2528/PIERM16111601