Vol. 55

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2017-04-03

A Fast Explicit FETD Method Based on Compressed Sensing

By Qi Qi, Ming Sheng Chen, Zhi-Xiang Huang, Xinyuan Cao, and Xian-Liang Wu
Progress In Electromagnetics Research M, Vol. 55, 161-167, 2017
doi:10.2528/PIERM17021101

Abstract

Linear equations must be solved at each time step as the explicit finite element time-domain (FETD) method is used to solve time dependent Maxwell curl equations, which leads to a huge amount of computational cost in a long period time simulation. A new scheme to accelerate the iteration solution for matrix equation is proposed based on compressed sensing (CS), in which a low rank measurement matrix is established by randomly extracting rows from mass matrix. Meanwhile, to reduce the number of measurements required, a sparse transform is constructed with the help of prior knowledge offered by the solution results of previous time steps. Numerical results of homogeneous cavity and inhomogeneous cavity are discussed to validate the effectiveness and accuracy of the proposed approach.

Citation


Qi Qi, Ming Sheng Chen, Zhi-Xiang Huang, Xinyuan Cao, and Xian-Liang Wu, "A Fast Explicit FETD Method Based on Compressed Sensing," Progress In Electromagnetics Research M, Vol. 55, 161-167, 2017.
doi:10.2528/PIERM17021101
http://www.jpier.org/PIERM/pier.php?paper=17021101

References


    1. Lee, J. F., R. Lee, and A. C. Cangellairs, "Time-domain finite elements method," IEEE Trans. Antennas Propagat., Vol. 52, No. 3, 2190-2195, 2004.

    2. Wong, M., O. Picon, and V. F. Hanna, "A finite element method based on Whitney forms to solve Maxwell equations in the time domain," IEEE Trans. Magn., Vol. 31, No. 3, 1618-1621, 1995.
    doi:10.1109/20.376343

    3. Rieben, R. N., G. H. Rodrigue, and D. A. White, "A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids," J. Computational Phys., Vol. 204, No. 2, 490-519, 2004.
    doi:10.1016/j.jcp.2004.10.030

    4. Movahhedi, M., A. Abdolali, and H. Ceric, "Optimization of the perfectly matched layer for the finite-element time-domain method," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 3, 10-12, 2007.
    doi:10.1109/LMWC.2006.887240

    5. Rieben, R. N., G. H. Rodrigue, and D. A. White, "High-order symplectic integration methods for finite element solutions to time dependent Maxwell equations," IEEE Trans. Antennas Propagat., Vol. 52, No. 8, 2190-2195, 2004.
    doi:10.1109/TAP.2004.832356

    6. He, B. and F. L. Teixeira, "Geometric finite element discretization of Maxwell equations in primal and dual spaces," Phys. Lett. A, Vol. 349, No. 1-4, 1-14, 2006.
    doi:10.1016/j.physleta.2005.09.002

    7. Baraniuk, R. G., "Compressive sensing," IEEE Signal Proc. Mag., Vol. 24, No. 4, 118-121, 2007.
    doi:10.1109/MSP.2007.4286571

    8. Chen, M. S. and F. L. Liu, "Compressive sensing for fast analysis of wide-angle monostatic scattering problems," IEEE Trans. Antennas Propagat., Vol. 10, No. 3, 1243-1246, 2011.
    doi:10.1109/LAWP.2011.2174190

    9. Tropp, J. A., J. N. Laska, and M. F. Duarte, "Beyond Nyquist efficient sampling of sparse band limited signals," IEEE Trans. Inf. Theory, Vol. 56, No. 1, 520-544, 2010.
    doi:10.1109/TIT.2009.2034811

    10. Mathelin, L. and K. A. Gallivan, "A compressed sensing approach for partial differential equations with random input data," Commun. Comput. Phys., Vol. 12, No. 4, 919-954, 2012.
    doi:10.4208/cicp.151110.090911a

    11. Caflisch, R. E., S. J. Osher, H. Schaeffer, and G. Tran, "PDEs with compressed solutions," arXiv preprint arXiv:1311.5850v2, 2014.

    12. Tropp, J. A. and A. Gilbert, "Signal recovery from partial information by orthogonal matching pursuit," IEEE Trans. Inf. Theory, Vol. 53, No. 12, 4655-4667, 2007.
    doi:10.1109/TIT.2007.909108