Vol. 58
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-07-17
Design and Measurement of a Novel Seamless Scanning Leaky Wave Antenna in Ridge Gap Waveguide Technology
By
Progress In Electromagnetics Research M, Vol. 58, 147-157, 2017
Abstract
The design and measurement of a novel seamless scanning leaky wave antenna in ridge gap waveguide technology are presented. The impedance matching technique is employed to eliminate the open-stopband (OSB) effect which produces a discontinuity for a seamless scanning leaky wave antenna. Ridge gap waveguide proposed recently is used as the feed structure. The antenna radiates from longitudinal slots of which the leakage constant is designed small to ensure a high directivity. Subsequently, for simplicity, a transition from Ku-band standard waveguide port (WR62) to ridge gap waveguide is designed, which operates within Ku-band with S11 below -15dB. A prototype has been fabricated, and measurements support the simulations obtained by full-wave analysis. The proposed antenna bandwidth is from 12.5GHz to 17.4GHz while seamless scanning is achieved from backward to forward, particularly including broadside radiation. The scanning range is from -9° to 19° with an average gain of 18.3dB.
Citation
Xingchao Dong, Hongjian Wang, Fei Xue, and Yang Liu, "Design and Measurement of a Novel Seamless Scanning Leaky Wave Antenna in Ridge Gap Waveguide Technology," Progress In Electromagnetics Research M, Vol. 58, 147-157, 2017.
doi:10.2528/PIERM17051801
References

1. Martinez-Ros, A. J., J. L. G´omez-Tornero, V. Losada, F. Mesa, and F. Medina, "Non-uniform sinusoidally modulated half-mode leaky-wave lines for near-field focusing pattern synthesis," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 1022-1031, 2015.
doi:10.1109/TAP.2014.2386339

2. Gupta, S., S. Abielmona, and C. Caloz, "Microwave analog Real-Time Spectrum Analyzer (RTSA) based on the spectral-spatial decomposition property of leaky-wave structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 12, 2989-2999, 2009.
doi:10.1109/TMTT.2009.2034223

3. Nasimuddin, N., Z. N. Chen, and X. Qing, "Substrate integrated metamaterial-based leaky-wave antenna with improved boresight radiation bandwidth," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 3451-3457, 2013.
doi:10.1109/TAP.2013.2256094

4. Williams, J. T., P. Baccarelli, S. Paulotto, and D. R. Jackson, "1-D combline leaky-wave antenna with the open-stopband suppressed: Design considerations and comparisons with measurements," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4484-4492, 2013.
doi:10.1109/TAP.2013.2271234

5. Nasimuddin, Z. N. Chen, and X. Qing, "Multilayered composite right/left-handed leaky-wave antenna with consistent gain," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 11, 5056-5062, 2012.
doi:10.1109/TAP.2012.2207680

6. Nasimuddin, Z. N. Chen, and X. Qing, "Dual metamaterials substrate integrated leaky-wave structures for antenna applications," 2012 7th European Microwave Integrated Circuit Conference, 830-833, 2012.
doi:10.23919/EuMC.2012.6459248

7. Nasimuddin, Z. N. Chen, and X. Qing, "Tapered composite right/left-handed leaky-wave antenna for wideband broadside radiation," Microwave & Optical Technology Letters, Vol. 57, No. 3, 624-629, 2015.
doi:10.1002/mop.28916

8. Nasimuddin, Z. N. Chen, and X. Qing, "Slotted SIW leaky-wave antenna with improved backward scanning bandwidth and consistent gain," 2017 11th European Conference on Antennas and Propagation (EUCAP), 752-755, 2017.
doi:10.23919/EuCAP.2017.7928339

9. Lyu, Y. L., X. X. Liu, P. Y. Wang, D. Erni, Q. Wu, C. Wang, N. Y. Kim, and F. Y. Meng, "Leaky-wave antennas based on noncutoff substrate integrated waveguide supporting beam scanning from backward to forward," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2155-2164, 2016.
doi:10.1109/TAP.2016.2550054

10. Mujumdar, M., A. Alphones, and Nasimuddin, "Compact leaky wave antenna with periodical slots on half mode substrate integrated waveguide," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1740-1741, 2015.
doi:10.1109/APS.2015.7305259

11. Mujumdar, M., A. Alphones, J. Cheng, and Nasimuddin, "Compact leaky wave antenna with periodical slots on substrate integrated waveguide," The 8th European Conference on Antennas and Propagation (EuCAP 2014), 766-770, 2014.
doi:10.1109/EuCAP.2014.6901873

12. Kildal, P. S., "Three metamaterial-based gap waveguides between parallel metal plates for mm/submm waves," 3rd European Conference on Antennas and Propagation 2009, EuCAP 2009, 28-32, 2009.

13. Kildal, P. S., "Artificially soft and hard surfaces in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 10, 1537-1544, 1990.
doi:10.1109/8.59765

14. Zaman, A. U. and P. S. Kildal, "Wide-band slot antenna arrays with single-layer corporate-feed network in ridge gap waveguide technology," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 2992-3001, 2014.
doi:10.1109/TAP.2014.2309970

15. Polemi, A., S. Maci, and P. S. Kildal, "Dispersion characteristics of a metamaterial-based parallel-plate ridge gap waveguide realized by bed of nails," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 904-913, 2011.
doi:10.1109/TAP.2010.2103006

16. Kildal, P. S., A. U. Zaman, E. Rajo-Iglesias, E. Alfonso, and A. Valero-Nogueira, "Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression," IET Microwaves, Antennas & Propagation, Vol. 5, No. 3, 262-270, 2011.
doi:10.1049/iet-map.2010.0089

17. Attia, H., M. S. Sorkherizi, and A. A. Kishk, "60 GHz PRGW slot antenna array with small separation and low mutual coupling," 2015 Global Symposium on Millimeter Waves (GSMM), 1-3, 2015.

18. Zarifi, D., A. Farahbakhsh, A. Zaman, and P. S. Kildal, "Design and fabrication of a high-gain 60 GHz corrugated slot antenna array with ridge gap waveguide distribution layer," IEEE Transactions on Antennas and Propagation, 2016.

19. Alfonso, E., A. U. Zaman, E. Pucci, and P. S. Kildal, "Gap waveguide components for millimetre-wave systems: Couplers, filters, antennas, MMIC packaging," 2012 International Symposium on Antennas and Propagation (ISAP), 243-246, 2012.

20. Vosoogh, A. and P. S. Kildal, "High efficiency 2 × 2 cavity-backed slot sub-array for 60 GHz planar array antenna based on gap technology," 2015 International Symposium on Antennas and Propagation (ISAP), 1-3, 2015.

21. Vosoogh, A., A. A. Brazález, and P. S. Kildal, "A V-band inverted microstrip gap waveguide end-coupled bandpass filter," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 4, 261-263, 2016.
doi:10.1109/LMWC.2016.2538598

22. Maaskant, R., W. A. Shah, A. U. Zaman, M. Ivashina, and P. S. Kildal, "Spatial power combining and splitting in gap waveguide technology," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 7, 472-474, 2016.
doi:10.1109/LMWC.2016.2574828

23. Vukomanovic, M., J. L. Vazquez-Roy, O. Quevedo-Teruel, E. Rajo-Iglesias, and Z. Sipus, "Gap waveguide leaky-wave antenna," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 2055-2060, 2016.
doi:10.1109/TAP.2016.2539376

24. Sharkawy, M. A. and A. A. Kishk, "Long slots array antenna based on ridge gap waveguide technology," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 10, 5399-5403, 2014.
doi:10.1109/TAP.2014.2345411

25. Mallahzadeh, A. R. and M. H. Amini, "Design of a leaky-wave long slot antenna using ridge waveguide," IET Microwaves, Antennas & Propagation, Vol. 8, No. 10, 714-718, 2014.
doi:10.1049/iet-map.2013.0458

26. Rajo-Iglesias, E. and P. S. Kildal, "Numerical studies of bandwidth of parallel-plate cut-off realised by a bed of nails, corrugations and mushroom-type electromagnetic bandgap for use in gap waveguides," IET Microwaves, Antennas & Propagation, Vol. 5, No. 3, 282-289, 2011.
doi:10.1049/iet-map.2010.0073