Vol. 61
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-10-19
Failure Correction of Linear Antenna Array by Changing Length and Spacing of Failed Elements
By
Progress In Electromagnetics Research M, Vol. 61, 75-84, 2017
Abstract
This paper presents a new approach for linear antenna array failure correction using geometry optimization of the failed antenna elements. It is done by changing the length and spacing of failed elements while the spacing and length of remaining elements are fixed. The flower pollination algorithm based on the characteristic of flowering plants has been used to correct the radiation pattern of linear antenna array with desired side lobe level and minimum return loss. Simulations are performed using Matlab. Two examples are given to show the effectiveness of the proposed method. In addition, the obtained results from simulation on Matlab are also validated by the results obtained from FEKO analysis.
Citation
Hemant Patidar, and Gautam Mahanti, "Failure Correction of Linear Antenna Array by Changing Length and Spacing of Failed Elements," Progress In Electromagnetics Research M, Vol. 61, 75-84, 2017.
doi:10.2528/PIERM17072002
References

1. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd Ed., John Wiley and Sons (Asia), Singapore, 2003.

2. Godara, L. C., Handbook of Antennas in Wireless Communications, CRC, Boca Raton, FL, 2002.

3. Yeo, B. K. and Y. Lu, "Array failure correction with a genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 47, 823-828, 1999.
doi:10.1109/8.774136

4. Rodriquez, J. A., F. Ares, E. Moreno, and G. Franceschetti, "Genetic algorithm procedure for linear array failure correction," Electronics Letters, Vol. 36, 196-198, 2000.
doi:10.1049/el:20000236

5. Klhan, S. U., I. M. Qureshi, B. Shoaib, and A. Naveed, "Recovery of failed element signal with a digitally beamforming using linear symmetrical array antenna," Journal of Information Science and Engineering, Vol. 32, 611-624, 2016.

6. Grewal, N. S., M. Rattan, and M. S. Patterh, "A linear antenna array failure correction using firefly algorithm," Progress In Electromagnetics Research M, Vol. 27, 241-254, 2012.
doi:10.2528/PIERM12101903

7. Guney, K., A. Durmus, and S. Basbug, "Antenna array synthesis and failure correction using differential search algorithm," International Journal of Antennas and Propagation, Vol. 2014, 1-8, Article ID 276754, 2014.

8. Grewal, N. S., M. Rattan, and M. S. Patterh, "A linear antenna array failure correction using improved bat algorithm," International Journal of RF and Microwave Computer Aided Eng., 2017, DOI: 10.1002/mmce.21119.

9. Lee, J. H. and Y. L. Chen, "Performance analysis of antenna array beamformers with mutual coupling effects," Progress In Electromagnetics Research B, Vol. 33, 291-315, 2011.
doi:10.2528/PIERB11052802

10. Mahanti, G. K., S. Das, A. Chakrabarty, J. C. Brégains, and F. Ares, "Design of reconfigurable array antennas with minimum variation of active impedances," IEEE Antennas and Wireless Propagation Letters, Vol. 5, 541-544, 2006.
doi:10.1109/LAWP.2006.889557

11. Thevenot, M., C. Menudier, A. El Sayed Ahmad, Z. El Nashef, F. Fezai, Y. Abdallah, E. Arnaud, F. Torres, and T. Monediere, "Synthesis of antenna arrays and parasitic antenna arrays with mutual couplings," International Journal of Antennas and Propagation, Vol. 2012, 1-22, 2012.
doi:10.1155/2012/309728

12. Muralidharan, R., A. Vallavaraj, G. K. Mahanti, and H. Patidar, "QPSO for failure correction of linear array of mutually coupled parallel dipole antennas with desired side lobe level and return loss," Journal of King Saud University - Engineering Science, Vol. 29, 112-117, 2017.
doi:10.1016/j.jksues.2015.05.001

13. Muralidharan, R., A. Vallavaraj, and G. K. Mahanti, "Firefly algorithm for failure correction of linear array of dipole antennas in presence of ground plane with mutual coupling effects," ACES Journal, Vol. 30, 1122-1128, 2015.

14. Garza, L. A., L. F. Yepes, D. H. Covarrubias, M. A. Alonso, and M. A. Panduro, "Synthesis of sparse circular antenna arrays applying a tapering technique over reconstructed continuous current distribution," IET Microwaves, Antennas & Propagation, Vol. 10, 347-352, 2016.
doi:10.1049/iet-map.2015.0401

15. Ibarra, M., M. A. Panduro, Á. G. Andrade, and A. Reyna, "Design of sparse concentric rings array for LEO satellites," Journal of Electromagnetic Waves and Applications, Vol. 29, 1983-2001, 2015.
doi:10.1080/09205071.2015.1072479

16. Panduro, M. A., A. L. Mendez, R. Dominguez, and G. Romero, "Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms," Int. J. Electron. Commun. (AEÜ), Vol. 60, 713-717, 2006.
doi:10.1016/j.aeue.2006.03.006

17. Mandal, S. K., S. Patra, S. Salam, K.Mandal, G. K. Mahanti, and N. N. Pathak, "Failure correction of linear antenna arrays with optimized element position using differential evolution," 2016 IEEE Annual India Conference (INDICON), Bangalore, India, 2016.

18. Yang, X. S., "Flower pollination algorithm for global optimization," Unconventional Computation and Natural Computation, Vol. 2012, 240-249, 7445, Lecture Notes in Computer Science, 2012.

19. Saxena, P. and A. Kothari, "Linear antenna array optimization using flower pollination algorithm,", Springer Plus, 2016, DOI: 10.1186/s40064-016-1961-7.

20. Singh, U. and R. Salgotra, "Synthesis of linear antenna array using flower pollination algorithm," Neural Computing and Applications, 1-11, 2016.

21. Chakravarthy Vedula, V. S. S. S., S. R. Chowdary Paladuga, and M. R. Prithvi, "Synthesis of circular array antenna for sidelobe level and aperture size control using flower pollination algorithm," International Journal of Antennas and Propagation, Vol. Article ID 819712, 2015, 1-9, 2015.
doi:10.1155/2015/819712

22. FEKO Suite 6.1, EM Software and Systems (www.feko.info), 2011.