Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 61 > pp. 169-176


By X. Lu, F. Peng, G. Li, Z. Xiao, and T. Hu

Full Article PDF (831 KB)

Traditional passive millimeter wave imaging (PMMW) mechanism measures intensity-only radiometric energy of the scene, and the limited information restricts the subsequent process of target detection and recognition. Polarimetric phenomena provide an extra dimension of information and are utilized to improve the PMMW imaging performance. Based on linear polarization characteristics for terrain identification in our previous work, the horizontal, vertical and 45 degree linearly polarimetric images are obtained by manually changing the polarization orientation of the radiometer with a selfdesigned rotating installation. Then the related Stokes parameters and the linearly polarized angle are calculated for principal component analysis (PCA). Pixels with similar polarimetric characteristic are clustered in the score-plot feature space. Then the clusters are extracted to realize object segmentation of the raw image. Three types of objects including metallic stuff, lawn and concrete park are finally segmented, demonstrating that the proposed segmentation is feasible and effective.

X. Lu, F. Peng, G. Li, Z. Xiao, and T. Hu, "Object Segmentation for Linearly Polarimetric Passive Millimeter Wave Images Based on Principle Component Analysis," Progress In Electromagnetics Research M, Vol. 61, 169-176, 2017.

1. Isiker, H., C. Ozdemir, and I. Unal, "Millimeter-wave band radiometric imaging experiments for the detection of concealed objects," 2015 IEEE Radar Conference, 23-26, Johannesbur, 2015.

2. Chen, H.-M., S. Lee, R. M. Rao, M. A. Slamani, and P. K. Varshney, "Imaging for concealed weapon detection: A tutorial overview of development in imaging sensors and processing," IEEE Signal Processing Magazine, Vol. 22, No. 2, 52-61, 2005.

3. Yujiri, L., "Passive millimeter wave imaging," 2006 IEEE MTT-S International Microwave Symposium Digest, 98-101, 2006.

4. Manabu, I., N. Shunichi, and N. Tatsuo, "Near-field thermal imaging by passive millimeter-wave microscopy," 2014 Asia-Pacific Microwave Conference, APMC, 1034-1036, 2014.

5. Zrazhevskij, A. Y., V. A. Golunov, D. M. Ermakov, M. T. Smirnov, E. P. Novichikhin, S. P. Golovachev, and E. V. Konkov, "The development of radiophysical methods for the polarization, including stereo) images acquisition in millimeter range related to problems of objects recognition, navigation, emergency management, security control and antiterroristic activity," Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2258-2261, 2005.

6. Nghiem, S. V., M. E. Veysoglu, J. A. Kong, and R. T. Shin, "Polarimetric passive remote sensing of a periodic soil surface: Microwave measurements and analysis," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 9, 997-1005, 1991.

7. Bernacki, B. E., J. F. Kelly, D. M Sheen, D. L. McMakin, J. R. Tedeschi, T. E. Hall, B. K. Hatchell, and P. L. J. Valdez, "Phenomenology studies using a scanning fully polarimetric passive W-band millimeter wave imager," SPIE Proceedings: Passive and Active Millimeter-Wave Imaging XIV, 80220C1-80220C10, 2011.

8. Wikner, D. A. and G. Samples, "Polarimetric passive millimeter-wave sensing," SPIE Proceedings: Passive Millimeter-Wave Imaging Technology V, 86-93, 2011.

9. Bernacki, B. E., J. F. Kelly, D. M. Sheen, D. L. McMakin, J. R. Tedeschi, R. V. Harris, A. Mendoza, T. E. Hall, B. K. Hatchell, and P. L. J. Valdez, "Passive fully polarimetric W-band millimeter-wave imaging (Invited Paper)," SPIE Proceedings: RF and Millimeter-Wave Photonics II, 82590F1-82590F11, 2012.

10. Liao, S., N. Gopalsami, T. W. Elmer, E. R. Koehl, A. Heifetz, K. Avers, E. Dieckman, and A. C. Raptis, "Passive millimeter-wave dual-polarization imagers," IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 7, 2042-2050, 2012.

11. Wilson, J. P., C. A. Schuetz, E. L. Stein, Jr., J. P. Samluk, D. G. Mackrides, and D. W. Prather, "Polarization difference imaging for millimeter-wave in a desert environment," SPIE Proceedings: Millimeter-Wave and Terahertz Sensors and Technology III, 78370E1-78370E6, 2012.

12. Gopalsami, N., S. Liao, T. Elmer, E. R. Koehl, and A. C. Raptis, "Evaluation of passive millimeter wave system performance in adverse weather conditions," SPIE Proceedings: Passive and Active Millimeter-Wave Imaging XV, 83620I1-83620I6, 2012.

13. Yeom, S., D.-S. Lee, H. Lee, J.-Y. Son, and V. P. Guschin, "Vector clustering of passive millimeter wave images with linear polarization for concealed object detection," Progress In Electromagnetics Research Letters, Vol. 39, 169-180, 2013.

14. Wilson, J. P., C. A. Schuetz, C. E. Harrity, S. Kozacik, D. L. K. Eng, and D. W. Prather, "Measured comparison of contrast and crossover periods for passive millimeter-wave polarimetric imagery," Optics Express, Vol. 21, No. 10, 12899-12906, 2013.

15. Kim, W.-G., N.-W. Moon, H.-K. Kim, and Y.-H. Kim, "Linear polarization sum imaging in passive millimeter-wave imaging system for target recognition," Progress in Electromagnetics Research, Vol. 136, 175-193, 2013.

16. Lu, X., Z. Xiao, J. Xu, and H. Huo, "3D millimeter wave image by combined active and passive system," Progress In Electromagnetics Research Letters, Vol. 50, 7-12, 2014.

17. Lu, X., L. Wu, Z. Xiao, and J. Xu, "Ranging technique based on conically scanned single pixel millimeter wave radiometer," International Journal of Engineering Research in Africa, Vol. 12, 43-52, 2014.

18. Lu, X., Z. Xiao, and J. Xu, "Linear polarization characteristics for terrain identification at millimeter wave band," Chinese Optics Letters, Vol. 12, No. 10, 1012011-1012015, 2014.

19. Prats-Montalbana, J. M., A. de Juanb, and A. Ferrera, "Multivariate image analysis: A review with applications," Chemometrics and Intelligent Laboratory Systems, Vol. 107, No. 1, 1-23, 2011.

© Copyright 2010 EMW Publishing. All Rights Reserved