Vol. 62
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-11-02
New Features of the ``Double-Humped Effect'' in the Magnetized Plasma
By
Progress In Electromagnetics Research M, Vol. 62, 1-9, 2017
Abstract
Statistical moments of a scattered field are calculated in the first and second approximations using modified smooth perturbation method. Analytical expressions of both the variance and correlation function are obtained in the principle plane containing wave vector of an incident wave and external magnetic field. Observation points are spaced apart at small distances taking into account diffraction effects. Numerical calculations are carried out for the anisotropic Gaussian spectral function containing both anisotropic factor and the angle of inclination of elongated anisotropic plasma irregularities using the experimental data. It was shown that 3D surface of the correlation function of the phase fluctuation oscillate and these variations are decreased increasing characteristic spatial scale of plasma irregularities. New peculiarities of the ``Double-humped Effect'' are revealed in the collisionless magnetized plasma. It was shown that spatial scale and the inclination angle of elongated anisotropic plasma irregularities play important role in formation of a gap in the spatial power spectrum. Varying the magneto-ionospheric plasma parameters and values of characteristic spatial scales of anisotropic irregularities the depth of a dip increases and oscillates.
Citation
George Jandieri, Akira Ishimaru, and Oleg Kharshiladze, "New Features of the ``Double-Humped Effect'' in the Magnetized Plasma," Progress In Electromagnetics Research M, Vol. 62, 1-9, 2017.
doi:10.2528/PIERM17091302
References

1. Kravtsov, Yu. A., Z. I. Feizulin, and A. G. Vinogradov, Radiowaves Propagation through the Earth Atmosphere, Moscow, Radio and Communication, Russia, 1983 (in Russian).

2. Ishimaru, A., Wave Propagation and Scattering in Random Media, Vol. 2, Multiple Scattering, Turbulence, Rough Surfaces and Remote Sensing, IEEE Press, Piscataway, New Jersey, USA, 1997.

3. Rytov, S. M., Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics. Vol. 4. Waves Propagation through Random Media, Springer, Berlin, New York, 1989.

4. Jandieri, G. V., A. Ishimaru, V. G. Jandieri, A. G. Khantadze, and Zh. M. Diasamidze, "Model computations of angular power spectra for anisotropic absorptive turbulent magnetized plasma," Progress In Electromagnetics Research, Vol. 70, 307-328, 2007.
doi:10.2528/PIER07013103

5. Jandieri, G. V., A. Ishimaru, B. S. Rawat, and N. K. Tugushi, "Peculiarities of the spatial spectrum of scattered electromagnetic waves in the turbulent collision magnetized plasma," Progress In Electromagnetics Research, Vol. 152, 137-149, 2015.
doi:10.2528/PIER15081802

6. Jandieri, G. V., A. Ishimaru, N. F. Mchedlishvili, and I. G. Takidze, "Spatial power spectrum of multiple scattered ordinary and extraordinary waves in magnetized plasma with electron density fluctuations," Progress In Electromagnetics Research M, Vol. 25, 87-100, 2012.
doi:10.2528/PIERM12053102

7. Jandieri, G. V. and A. Ishimaru, "Some peculiarities of the spatial power spectrum of scattered electromagnetic waves in randomly inhomogeneous magnetized plasma with electron density and external magnetic field fluctuations," Progress In Electromagnetics Research B, Vol. 50, 77-95, 2013.
doi:10.2528/PIERB13013002

8. Jandieri, G. V., "``Double-humped effect'' in the turbulent collision magnetized plasma," Progress In Electromagnetics Research M, Vol. 48, 95-102, 2016.
doi:10.2528/PIERM16031203

9. Ginzburg, V. L., Propagation of Electromagnetic Waves in Plasma, Gordon and Beach, New York, 1961.

10. Gershman, B. N., L. M. Eruxhimov, and Yu. Ya. Yashin, Wavy Phenomena in the Ionosphere and Cosmic Plasma, Moscow, Nauka, 1984 (in Russian).

11. Jandieri, G. V., V. G. Gavrilenko, and A. V. Aistov, "Some peculiarities of wave multiple scattering in a statistically anisotropic medium," Waves Random Media, Vol. 10, 435-445, 2000.
doi:10.1088/0959-7174/10/4/303

12. Jandieri, G. V., V. G. Gavrilenko, A. V. Sarokin, and V. G. Jandieri, "Some properties of the angular power distribution of electromagnetic waves multiply scattered in a collisional magnetized turbulent plasma," Plasma Physics Report, Vol. 31, 604-615, 2005.
doi:10.1134/1.1992588

13. Jandieri, G. V., A. Ishimaru, N. N. Zhukova, T. N. Bzhalava, and M. R. Diasamidze, "On the influence of fluctuations of the direction of an external magnetic field an phase and amplitude correlation functions of scattered radiation by magnetized plasma slab," Progress In Electromagnetics Research B, Vol. 22, 121-143, 2010.
doi:10.2528/PIERB10051402

14. Tatarskii, V. I., Wave Propagation in a Turbulent Medium, McGraw-Hill, New York, USA, 1961.

15. Prakash, S. S., S. Pal, and H. Chandra, "In-situ studies of equatorial spread F over SHAR-steep gradients in the bottomside F-region and transitional wavelength results," J. Atmos. Terr. Phys., Vol. 53, 977-986, 1991.
doi:10.1016/0021-9169(91)90009-V

16. Raizada, S. and H. S. S. Sinha, "Some new features of electron density irregularities over SHAR during strong spread F," Ann. Geophysicae, Vol. 18, 141-151, 2000.
doi:10.1007/s00585-000-0141-8