Vol. 63
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-12-05
Design of the Permanent Magnet Linear Synchronous Motor for High Thrust and Low Cogging Force Performance
By
Progress In Electromagnetics Research M, Vol. 63, 83-92, 2018
Abstract
Permanent magnet linear synchronous motors (PMLSM) are well known for its high thrust performance. However, such high thrust can be distorted by the existence of cogging force due to the attraction between stator core and permanent magnet (PM). To improve its performance, two parts of the PMLSM structure were considered during the design. They are PM magnetization arrangement on mover side and stator slot opening parameters on stator side. The designed models were simulated by using FEM software, and the performances of the models are then compared. The aim of the design is to achieve high thrust and low cogging force characteristics. Apart from average thrust Fave and cogging force Fcog, the performance of the PMLSM is also evaluated using average thrust, Fave to cogging force ratio Fcog, called as thrust ratio. Based on the design, the highest thrust ratio Fave: Fcog, obtained from radial, axial and Halbach models, are 2.5032, 2.6262 and 1.8437, respectively.
Citation
Nur Ashikin Mohd Nasir, Fairul Azhar bin Abdul Shukor, Raja Nor Firdaus, Hiroyuki Wakiwaka, Kunihisa Tashiro, and Masami Nirei, "Design of the Permanent Magnet Linear Synchronous Motor for High Thrust and Low Cogging Force Performance," Progress In Electromagnetics Research M, Vol. 63, 83-92, 2018.
doi:10.2528/PIERM17101907
References

1. Pakdelian, S., Y. Deshpande, and H. A. Toliyat, "An electric machine integrated with transrotary magnetic gear," 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 3356-3362, Raleigh, NC, 2012.

2. Brando, G., A. Dannier, A. Del Pizzo, and L. P. Di Noia, "Electric steering for aircraft nose landing gears using axial-flux permanent-magnet motors," 2016 XXII International Conference on Electrical Machines (ICEM), 761-767, Lausanne, 2016.

3. Varaticeanu, B. D. and P. Minciunescu, "Modelling and analysis of dual-sided coreless linear synchronous motor," Rev. Roum. Sci. Tech., Electrotech Net Energy, 2, Bucarest, 2014.

4. Oshima, S., S. Tahara, and K. Tagawa, "Thrust and thrust ripple of linear reluctance motor compared to permanent linear synchronous motor," 15th International Conference on Electrical Machine and Systems (ICEMS), 1-4, 2012.

5. He, Q. and X. Bao, "Reducing cogging torque in permanent-magnet synchronous motors by auxiliary teeth method," 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), 1488-1495, Hefei, 2016.
doi:10.1109/ICIEA.2016.7603821

6. Friswell, M. I., Dynamics of Rotating Machines, 228, Cambridge University Press, 2010.
doi:10.1017/CBO9780511780509.007

7. Tzou, H. and T. Fukuda, Precision Sensors, Actuators and Systems, 75, Springer Science and Business Media, 2012.

8. Li, B., J. Zhao, X. Liu, Y. Guo, H. Hu, and J. Li, "Detent force reduction of an arc-linear permanent-magnet synchronous motor by using compensation windings," IEEE Transactions on Industrial Electronics, Vol. 64, No. 4, 3001-3011, 2017.
doi:10.1109/TIE.2016.2643619

9. Patel, A. N., "Influence of stator teeth shaping on cogging torque of radial flux permanent magnet brushless DC motor," 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE), 1-4, 2016.

10. Gieras, J. F. and Z. J. Piech, Linear Synchronous Motor-Transportation and Automation Systems, CRC Press, Boca Raton, Florida, 2000.

11. Azhar, F., H. Wakiwaka, K. Tashiro, and M. Nirei, "Design and performance index comparison of the permanent magnet linear motor," Progress In Electromagnetics Research M, Vol. 43, 101-108, 2015.
doi:10.2528/PIERM15071204

12. Mohd Nasir, N. A., F. A. Abdul Shukor, R. N. F. K. Raja Othman, H. Wakiwaka, and K. Tashiro, "Design of permanent magnet linear synchronous motor stator to improve magnetic flux density profile toward high thrust density performance,", Mohamed Ali M., Wahid H., Mohd Subha N., Sahlan S., Md. Yunus M., Wahap A. (eds.), Modeling, Design and Simulation of Systems, AsiaSim 2017, Communications in Computer and Information Science, Vol. 751, Springer, Singapore, 2017.

13. Ling, Z., J. Ji, J. Wang, and W. Zhao, "Design optimization and test of a radially magnetized magnetic screw with discretized PMs," IEEE Trans. on Industrial Electronics, 2017.

14. Shi, W., C. Xiao, Y. Lei, B. Yu, F. Wu, and P. Zheng, "Optimization on thrust ripple of an axial-flux permanent-magnet linear synchronous machine," 2011 International Conference on Electrical Machines and Systems, 1-6, Beijing, 2011.

15. Shahosseini, I. and K. Najafi, "Cylindrical halbach magnet array for electromagnetic vibration energy harvesters," 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 1051-1054, Estoril, 2015.

16. Koo, M. M., J. Y. Choi, H. J. Shin, and J. M. Kim, "No-load analysis of PMLSM with halbach array and PM overhang based on three-dimensional analytical method," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 4, 1-5, 2016.

17. Azhar, F., N. A. M. Nasir, R. N. Firdaus, H. Wakiwaka, K. Tashiro, and M. Nirei, "Comparison and prediction of performance index of permanent magnet linear motor," 2016 IEEE International Conference on Power and Energy (PECon), 558-563, 2016.
doi:10.1109/PECON.2016.7951623