Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 66 > pp. 73-85


By L. Zuo, J. Pan, and B. Ma

Full Article PDF (894 KB)

This paper presents a direction of arrival (DOA) estimation method. Spectral-domain interferometer equation is first established based on integral transforms of spatial interferometer equations. The direction finding problem in the spatial domain is thereby mapped to that in the spectral domain, relating angular parameters to spatial spectrums. This method is then applied to DOA estimation with circular arrays and spherical arrays. As a result, the elevation angle and azimuth angle are decoupled, giving closed-form and analytical formulae for DOA estimations by discrete phase samples on a sampling aperture. Algebraic relations between angular parameters and phase samples are established, and this method is hence computationally efficient. The Cramer-Rao lower bound (CRLB) of the proposed method is derived, and accuracy analysis demonstrates that the proposed method approaches the CRLB. In addition, mathematical insights into accuracy enhancement by large number of samples are observed via Parseval's theorem. Finally, numerical simulations and experimental measurements are provided to verify the effectiveness and appealing performance of the proposed method.

L. Zuo, J. Pan, and B. Ma, "Fast DOA Estimation in the Spectral Domain and its Applications," Progress In Electromagnetics Research M, Vol. 66, 73-85, 2018.

1. Wu, Y. and H. C. So, "Simple and accurate two-dimensional angle estimation for a single source with uniform circular array," IEEE Antennas Wireless Propag. Lett., Vol. 7, 78-80, 2008.

2. Wu, Y. W., S. Rhodes, and E. H. Satorius, "Direction of arrival estimation via extended phase interferometry," IEEE Trans. Aerosp. Electron. Syst., Vol. 31, No. 1, 375-381, 1995.

3. Seidman, L. P., "Bearing estimation error with a linear array," IEEE Trans. Audio & Electroacoust., Vol. 19, No. 2, 147-157, 1971.

4. Jackson, B. R., S. Rajan, and B. J. Liao, "Direction of arrival estimation using directive antennas in uniform circular arrays," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 736-747, 2015.

5. Pace, P. E., D. Wickersham, D. C. Jenn, and N. S. York, "High-resolution phase sampled interferometry using symmetrical number systems," IEEE Trans. Antennas Propag., Vol. 49, No. 10, 1411-1423, 2001.

6. Lee, J. H. and J. M. Woo, "Interferometer direction-finding system with improved DF accuracy using two different array configurations," IEEE Antennas Wireless Propag. Lett., Vol. 14, 719-722, 2015.

7. Liu, Z. M., Z. T. Huang, and Y. Y. Zhou, "Computationally efficient direction finding using uniform linear arrays," IET Radar, Sonar, Navigation, Vol. 6, No. 1, 39-48, 2012.

8. Liang, J. and D. Liu, "Two L-shaped array-based 2-D DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research, Vol. 112, 273-298, 2011.

9. Liao, B., Y. T. Wu, and S. C. Chan, "A generalized algorithm for fast two-dimensional angle estimation of a single source with uniform circular arrays," IEEE Antennas Wireless Propag. Lett., Vol. 11, No. 2, 984-986, 2012.

10. Ioannides, P. and C. A. Balanis, "Uniform circular arrays for smart antennas," IEEE Antennas Propag. Magazine, Vol. 47, No. 4, 192-206, 2005.

11. Mathews, C. P. and M. D. Zoltowski, "Eigenstructure techniques for 2-D angle estimation with uniform circular array," IEEE Trans. Signal Process., Vol. 42, No. 9, 2395-2407, 1994.

12. Yang, P., F. Yang, and Z.-P. Nie, "DOA estimation with sub-array divided technique and interporlated ESPRIT algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.

13. Si, W., L. Wan, L. Liu, and Z. Tian, "Fast estimation of frequency and 2-D DOAs for cylindrical conformal array antenna using state-space and propagator method," Progress In Electromagnetics Research, Vol. 137, 51-71, 2013.

14. Belloni, F. and V. Koivunen, "Beamspace transform for UCA: Error analysis and bias reduction," IEEE Trans. Signal Process., Vol. 54, No. 8, 3078-3089, 2006.

15. Huang, Q., L. Zhang, and Y. Fang, "Two-stage decoupled DOA estimation based on real spherical harmonics for spherical arrays," IEEE/ACM Trans. Audio Speech Lang. Process., Vol. 25, No. 11, 2045-2058, 2017.

16. Teutsch, H., Modal Array Signal Processing: Principles and Applications of Acoustic Wavefield Decomposition (Lecture Notes in Control and Information Sciences), Springer, Berlin, Germany, 2007.

17. De Witte, E., H. Griffith, and P. Brennan, "Phase mode processing for spherical arrays," Electron. Lett., Vol. 39, No. 20, 1430-1431, 2003.

18. Meyer, J. and G. Elko, "A highly scalable spherical microphone array based on an orthonormal decomposition of the soundfield," Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Vol. 2, 1781-1784, May 2002.

19. Rafaely, B., "Analysis and design of spherical microphone arrays," IEEE Trans. Speech Audio Process., Vol. 13, 135-143, 2005.

20. Rafaely, B., "The spherical-shell microphone array," IEEE Trans. Audio, Speech, Lang. Process., Vol. 16, No. 4, 740-747, 2008.

21. Rafaely, B., Fundamentals of Spherical Array Processing, (Springer Topics in Signal Processing), Springer-Verlag, Berlin, Germany, 2015.

22. Rafaely, B., "Plane-wave decomposition of the pressure on a sphere by spherical convolution," J. Acoust. Soc. Amer., Vol. 116, 2149-2157, 2004.

23. Moore, A., C. Evers, and P. Naylor, "Direction of arrival estimation in the spherical harmonic domain using subspace pseudo-intensity vectors," IEEE/ACM Trans. Audio Speech Lang. Process., Vol. 25, No. 1, 178-192, 2017.

24. Costa, M., A. Richter, and V. Koivunen, "Unified array manifold decomposition based on spherical harmonics and 2-D Fourier basis," IEEE Trans. Signal Process., Vol. 58, No. 9, 4634-4645, 2010.

25. Goossens, R. and H. Rogier, "Unitary spherical ESPRIT: 2-D angle estimation with spherical arrays for scalar fields," IET Signal Process., Vol. 3, No. 3, 221-231, 2008.

26. Goossens, R. and H. Rogier, "A hybrid UCA-RARE/Root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling," IEEE Trans. Antennas Propag., Vol. 55, No. 3, 841-849, 2007.

27. Wang, B. H., H. T. Hui, and M. S. Leong, "Decoupled 2D direction of arrival estimation using compact uniform circular arrays in the presence of elevation-dependent mutual coupling," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 747-755, 2010.

28. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill, 2001.

29. Driscoll, J. R., D. M. Healy, and Jr., "Computing Fourier transforms and convolutions on the 2-sphere," Adv. Appl. Math., Vol. 15, No. 2, 202-250, 1994.

30. Williams, E. G., Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography, 1st Ed., Academic, London, U.K., 1999.

31. Kay, S. M., "A fast and accurate single frequency estimator," IEEE Trans. Acoustics, Speech, Signal Process., Vol. 37, No. 12, 1987-1990, 1989.

32. Tretter, S. A., "Estimating the frequency of a noisy sinusoid by linear regression," IEEE Trans. Inf. Theory, Vol. 31, No. 6, 832-835, 1985.

33. Rife, D. and R. Boorstyn, "Single tone parameter estimation from discrete-time observations," IEEE Trans. Inf. Theory, Vol. 20, No. 5, 591-598, 1974.

34. Mcaulay, R., "Interferometer design for elevation angle estimation," IEEE Trans. Aerosp. Electron. Syst., Vol. 13, No. 5, 486-503, 1977.

35. Kay, Kay, S. M., Fundamentals of Statistical Signal Processing: Estimation Theory, PTR Prentice Hall, 1993.

36. Robert, J. M., II, Handbook of Fourier Analysis and Its Applications, Oxford University Press, 2009.

© Copyright 2010 EMW Publishing. All Rights Reserved