Vol. 67
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-04-04
Carbon Fiber Reinforced Polymer with Isotropic 60 GHz Reflectivity
By
Progress In Electromagnetics Research M, Vol. 67, 1-8, 2018
Abstract
Carbon fiber reinforced polymer (CFRP) is measured as reflector material for millimeter waves at 60 GHz. Reflectivity is measured to characterize material anisotropy in a mono-static setup. Disc shaped material samples are rotated in steps of one degree. Four commonly employed CFRP are investigated: unidirectional fibers, plain-weave, twill-weave and fiber shreds. Results show that the unidirectional CFRP and twill-weave CFRP are anisotropic, while the remaining materials are isotropic within measurement accuracy.
Citation
Erich Zochmann, Gerald Artner, Stefan Pratschner, Martin Lerch, Christoph F. Mecklenbraeuker, and Markus Rupp, "Carbon Fiber Reinforced Polymer with Isotropic 60 GHz Reflectivity," Progress In Electromagnetics Research M, Vol. 67, 1-8, 2018.
doi:10.2528/PIERM18021504
References

1. Asif, S. M., et al. "On using the electrical characteristics of carbon microfibers for designing a monopole antenna," IEEE International Symposium on Antennas and Propagation (APS), 1881-1882, 2016.

2. Manac’h, L., X. Castel, and M. Himdi, "Performance of a Lozenge monopole antenna made of pure composite laminate," Progress In Electromagnetics Research Letters, Vol. 35, 115-123, 2012.
doi:10.2528/PIERL12083003

3. Balanis, C. A. and D. De Carlo, "Monopole antenna patterns on finite size composite ground planes," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 4, 764-768, 1982.
doi:10.1109/TAP.1982.1142842

4. Artner, G. and R. Langwieser, "Performance of an automotive antenna module on a carbon-fiber composite car roof," European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 2016.

5. Artner, G., R. Langwieser, and C. F. Mecklenbräuker, "Carbon fiber reinforced polymer as antenna ground plane material up to 10 GHz," European Conference on Antennas and Propagation (EuCAP), Paris, France, 2017.

6. Artner, G., R. Langwieser, and C. F. Mecklenbräuker, "Concealed CFRP vehicle chassis antenna cavity," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1415-1418, 2017.
doi:10.1109/LAWP.2016.2637560

7. De Assis, R. R. and I. Bianchi, "Analysis of microstrip antennas on carbon fiber composite material," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 11, No. 1, 154-161, 2012.
doi:10.1590/S2179-10742012000100013

8. Keen, K. M., "Surface efficiency measurements on a high-modulus carbon fibre composite reflector antenna at L- and S-band frequencies," Electronics Letters, Vol. 12, No. 7, 160-161, 1976.
doi:10.1049/el:19760125

9. Nicholson, K. J., W. S. T. Rowe, P. J. Callus, and K. Ghorbani, "Split-ring resonator loading for the slotted waveguide antenna stiffened structure," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1524-1527, 2011.
doi:10.1109/LAWP.2011.2181474

10. Galehdar, A., et al. "Capacitively fed cavity-backed slot antenna in carbon-fiber composite panels," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1028-1031, 2012.
doi:10.1109/LAWP.2012.2214197

11. Nicholson, K. J., et al. "Coaxial right/left-handed transmission line for electronics beam steering in the slotted waveguide antenna stiffened structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 4, 773-778, 2014.
doi:10.1109/TMTT.2014.2308480

12. Kim, H. C. and S. K. See, "Electrical properties of unidirectional carbon-epoxy composites in wide frequency band," Journal of Physics D: Applied Physics, Vol. 23, 916-921, 1990.
doi:10.1088/0022-3727/23/7/026

13. Galehdar, A., et al. "The effect of ply orientation on the performance of antennas in or on carbon fiber composites," Progress In Electromagnetics Research, Vol. 116, 123-136, 2011.
doi:10.2528/PIER11031512

14. Artner, G., P. K. Gentner, J. Nicolics, and C. F. Mecklenbräuker, "Carbon fiber reinforced polymer with shredded fibers: Quasi-isotropic material properties and antenna performance," International Journal of Antennas and Propagation, Vol. 2017, Article ID 6152651, 2017.

15. Mehdipour, A., et al. "Mechanically reconfigurable antennas using an anisotropic carbon-fibre composite ground," IET Microwaves, Antennas & Propagation, Vol. 7, No. 13, 1055-1063, 2013.
doi:10.1049/iet-map.2013.0115

16. Galehdar, A., et al. "A frequency selective polarizer using carbon fibre reinforced polymer composites," Progress In Electromagnetics Research C, Vol. 25, 107-118, 2012.
doi:10.2528/PIERC11092610

17. Russell, M., et al. "Millimeter-wave radar sensor for automotive intelligent cruise control (ICC)," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 12, 2444-2453, 1997.
doi:10.1109/22.643858

18. Hasch, J., et al. "Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 3, 845-860, 2012.
doi:10.1109/TMTT.2011.2178427

19. Pi, Z. and F. Khan, "An introduction to millimeter-wave mobile broadband systems," IEEE Communications Magazine, Vol. 49, No. 6, 2011.
doi:10.1109/MCOM.2011.5783993

20. Roh, W., et al. "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Communications Magazine, Vol. 52, No. 2, 106-113, 2014.
doi:10.1109/MCOM.2014.6736750

21. Va, V., T. Shimizu, G. Bansal, R. W. Heath, and Jr., "Millimeter wave vehicular communications: A survey," Foundations and Trends in Networking, Vol. 10, No. 1, 1-113, 2015.
doi:10.1561/1300000054

22. Kumari, P., N. Gonzalez-Prelcic, R. W. Heath, and Jr., "Investigating the IEEE 802.11 ad standard for millimeter wave automotive radar," IEEE Vehicular Technology Conference (VTC Fall), 2015.

23. Futatsumori, S., et al. "Fundamental applicability evaluation of carbon fiber reinforced plastic materials utilized in millimeter-wave antennas," IEEE Conference on Antenna Measurements and Applications (CAMA), 1-2, 2014.

24. Futatsumori, S., A. Kohmura, and N. Yonemoto, "Performance measurement of compact and high-range resolution 76 GHz millimeter-wave radar system for autonomous unmanned helicopters," IEICE Transactions on Electronics, Vol. 96, No. 4, 586-594, 2013.
doi:10.1587/transele.E96.C.586

25. Van’t Klooster, C. G. M., V. V. Parshin, and S. E. Mayasnikova, "Reflectivity of antenna reflectors: Measurements at frequencies between 110 and 200 GHz," IEEE Antennas and Propagation Society International Symposium (APS), 2003.

26. Van’t Klooster, C. and V. Parshin, "Reflector reflection loss 110–350 GHz," International Symposium on Antennas and Propagation (ISAP), Niigata, Japan, 2007.

27. Artner, G., et al. "Angle-dependent reflectivity of twill-weave carbon fibre reinforced polymer for millimetre waves," Electronics Letters, Vol. 54, No. 6, 359-361, 2018.
doi:10.1049/el.2017.3010

28. Zöchmann, E., et al. "Associating spatial information to directional millimeter wave channel measurements," IEEE Vehicular Technology Conference (VTC-Fall), 2017.

29. Teodorescu, F., et al. "On the recycling of carbon fibers reinforced polymer matrix composites," IASME/WSEAS International Conference on Energy, Environment, Ecosystems and Sustainable Development, EEESD, 2008.