PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 69 > pp. 77-86

THE ANALYSIS AND EXPERIMENTAL INVESTIGATION OF ELECTROMAGNETIC CHARACTERISTICS ON HIGH SPEED CIRCUIT PDN WITH MULTISLOTS

By Y. Li, Z. Gao, P. Zuo, W. Cao, H.-X. Zheng, and E. Li

Full Article PDF (4,901 KB)

Abstract:
The electromagnetic characteristics of a high speed IC power distribution network (PDN) are of vital important with the rapid increasing of operation speed and scale down CMOS manufacturing size, in particular, the fundamental electromagnetic theory including impedance and loop inductance of various designed IC power-plane structures. In addition, the area occupancy ratio of slot (AOROS) of irregular parallel-plane structures with multi-slots plays a key role in PDN impedance and loop inductance, where the influence of AOROS on impedance and loop inductance is investigated for various structures. Moreover, experimental work is carried out to validate the influence of AOROS on impedance and loop inductance of the PDN. The simulation and measurement of impedance are performed up to 10 GHz, and a good agreement is obtained between the simulation and experiment.

Citation:
Y. Li, Z. Gao, P. Zuo, W. Cao, H.-X. Zheng, and E. Li, "The Analysis and Experimental Investigation of Electromagnetic Characteristics on High Speed Circuit PDN with Multislots," Progress In Electromagnetics Research M, Vol. 69, 77-86, 2018.
doi:10.2528/PIERM18032103

References:
1. Jingook, K., W. Songping, W. Hanfeng, Y. Takita, H. Takeuchi, K. Arak, F. Gang, and F. Jun, "Improved target impedance and IC transient current measurement for power distribution network design," 2010 IEEE International Symposium on Electromagnetic Compatibility (EMC), 445-450, 2010.
doi:10.1109/ISEMC.2010.5711316

2. Ye, H. Q., X. C.Wei, and E. P. Li, "A novel semi-analytical solution of impedance of grid-type power distribution network," IEEE International Symposium on Electromagnetic Compatibility (EMC), 16-22, Aug. 2015.

3. Johns, P. B. and R. L. Beurle, "Numerical solution of 2-dimensional scattering problems using a transmission-line matrix," Proceedings of the IEEE, Vol. 59, No. 9, 1203-1208, Sept. 1971.

4. Roy, S. and A. Dounavis, "Macromodeling of multilayered power distribution network based on multiconductor transmission line approach," IEEE Transactions on Comp. Packag. Manufact. Technol. B, Vol. 3, 1047, Jun. 2013.
doi:10.1109/TCPMT.2013.2245377

5. Wu, H. H., J. W. Meyer, K. Lee, and A. Barber, "Accurate power supply and ground plane models," IEEE Transactions on Antennas and Propagation, Vol. 22, No. 3, 259-266, 1999.

6. Ruehli, A. E., G. Antonini, J. Esch, J. Ekman, A. Mayo, and A. Orland, "Non-orthoganal PEEC formulation for time and frequency domain EM and circuit modeling," Proc. of the IEEE Int. Symp. on Electromagnetic Compatibility, Vol. 45, 167-176, May 2003.
doi:10.1109/TEMC.2003.810804

7. Wei, L., K. Shringarpure, A. Ruehli, E. Wheeler, and J. Drewniak, "Plane-pair PEEC models for PDN using sub meshing," 2014 IEEE 23rd Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), May 11, 2015.

8. Dhatt, G., E. Lefrancois, and G. Touzot, Finite Element Method, John Wiley & Sons, 2012.
doi:10.1002/9781118569764

9. Zhou, F., A. E. Ruehli, and J. Fan, "Efficient mid-frequency plane inductance computation," 2010 IEEE International Symposium on Electromagnetic Compatibility (EMC), 831-836, 2010.
doi:10.1109/ISEMC.2010.5711387

10. Ruehli, A., "Equivalent circuit models for three dimensional multiconductor systems," IEEE Trans. Microwave Theory and Techniques, Vol. 22, No. 3, 216-221, Mar. 1974.
doi:10.1109/TMTT.1974.1128204

11. Li, L., A. E. Ruehli, and J. Fan, "Accurate and efficient computation of power plane pair inductance," 2012 IEEE 21st Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 167-170, 2012.
doi:10.1109/EPEPS.2012.6457869

12. Wolff, P. K. and A. E. Ruehli, "Inductance computations for complex three-dimensional geometries," Int. Symp. on Circuits and Sys., 16-19, IC CAD, Chicago, Il, 1981.

13., , CST Microwave studio, 2016, [Online], Available: https://www.cst.com/.

14., , Standard for Validation of Computational Electromagnetics Computer Modeling and Simulation --- Part 1, IEEE Standard P1597, 2008.

15. Duffy, A. P., A. J. M. Martin, A. Orlandi, G. Antonini, T. M. Benson, and M. S.Woolfson, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part I --- The FSV method," IEEE Trans. Electromagn. Compat., Vol. 48, No. 3, 449-459, Aug. 2006.
doi:10.1109/TEMC.2006.879358

16. Orlandi, A., A. P. Duffy, B. Archambeault, G. Antonini, D. E. Coleby, and S. Connor, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part II --- Assessment of FSV performance," IEEE Trans. Electromagn. Compat., Vol. 48, No. 3, 460-467, Aug. 2006.
doi:10.1109/TEMC.2006.879360


© Copyright 2010 EMW Publishing. All Rights Reserved