PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 72 > pp. 105-114

DESIGN AND DEVELOPMENT OF A NOVEL EBG CELL

By S. D. Ahirwar, D. Ramakrishna, and V. M. Pandharipande

Full Article PDF (456 KB)

Abstract:
In this paper, design and development of a novel electromagnetics band gap cell is presented. The EBG cell is designed aiming its use at relatively low frequencies. It is designed as a uni-planar structure to simplify the fabrication processes. It consists of multiple parallel combinations of L and C. These components are realized using planar microwave integrated circuit technology. The components L & C are designed as a meander-line inductor and inter-digital capacitors, respectively. The cell is perfectly symmetrical along x and y-axes to have uniform performance along two orthogonal directions. It is evaluated for its S-parameters and reflection phase. Simulated and measured results are presented for frequency range of 0.885 GHz to 3.1 GHz.

Citation:
S. D. Ahirwar, D. Ramakrishna, and V. M. Pandharipande, "Design and Development of a Novel EBG Cell," Progress In Electromagnetics Research M, Vol. 72, 105-114, 2018.
doi:10.2528/PIERM18041805
http://www.jpier.org/pierm/pier.php?paper=18041805

References:
1. Mahmoud, S. F., "A new miniaturized annular ring patch resonator partially loaded by a meta material ring with negative permeability and permittivity," IEEE Antennas and Wireless Propagation Letters, Vol. 3, No. 1, 19-22, 2004.
doi:10.1109/LAWP.2004.825092

2. Gonzalo, R., P. de Maagt, and M. Sorolla, "Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2131-2138, Nov. 1999.
doi:10.1109/22.798009

3. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, 2009.

4. Yang, F. and Y. Rahmat-Samii, "Mutual coupling reduction of microstrip antennas using electromagnetic band-gap structure," Proc. IEEE AP-S Int. Symp. Dig., Vol. 2, 478-481, Jul. 2001.

5. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2939-2949, Oct. 2003.

6. Alam, M. S., M. T. Islam, and N. Misran, "A novel compact split ring slotted electromagnetic band gap structure for micro strip patch antenna performance enhancement," Progress In Electromagnetic Research, Vol. 130, 389-409, 2012.
doi:10.2528/PIER12060702

7. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2691-2703, Oct. 2003.
doi:10.1109/TAP.2003.817559

8. Abedin, M. F., M. Z. Azad, and M. Ali, "Wideband smaller unit-cell planar EBG structures and their application," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 903-908, Mar. 2008.
doi:10.1109/TAP.2008.917007

9. Xu, H.-J., Y.-H. Zhang, and Y. Fan, "Analysis of the connection section between K connector and microstrip with Electromagnetic Band gap (EBG) structure," Progress In Electromagnetics Research, Vol. 73, 239-247, 2007.
doi:10.2528/PIER07040801

10. Kim, M. and D. G. Kam, "Wideband and compact EBG structure with balanced slots," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 5, No. 6, 818-827, Jun. 2015.
doi:10.1109/TCPMT.2015.2436404

11. Karim, M. F., A. Q. Li, A. Yu, and A. Alphone, "Tunable filter using fractal Electromagnetic Band Gap (EBG) structures," Sensors and Actuators A, Vol. 133, No. 2, 355-362, 2007.
doi:10.1016/j.sna.2006.06.052

12. Gao, M.-J., L.-S. Wu, and J. F. Mao, "Compact notched ultra-wideband bandpass filter with improved out-of-band performance using quasi electromagnetic band gap structure," Progress In Electromagnetics Research, Vol. 125, 137-150, 2012.

13. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

14. Yang, F.-R., K.-P. Ma, Y. Qian, and T. Itoh, "A Uniplanar Compact Photonic Bandgap (UC-PBG) structure and its applications for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 8, 1509-1514, 1999.
doi:10.1109/22.780402

15. Lin, B.-Q., Q.-R. Zheng, and N.-C. Yuan, "A novel planar PBG structure for size reduction," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 5, 269-271, May 2006.
doi:10.1109/LMWC.2006.873492

16. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, ISBN-13 (e-book), Cambridge University Press, 2009.

17. Collin, R., Field Theory of Guided Waves, 2nd Ed., IEEE Press, New York, 1991.

18. Kovacs, P. and T. Urbanec, "Electromagnetic Band Gap structures: Practical tips and advice for antenna engineers," Radioengineering, Vol. 21, No. 1, Apr. 2012.

19. Brown, E. R., C. D. Parker, and E. Yablonovitch, "Radiation properties of a planar antenna on a photonic-crystal substrate," J. Opt. Soc. Am. B, Vol. 10, No. 2, 404-407, 1993.
doi:10.1364/JOSAB.10.000404

20. Simovski, C. R., P. Maagt, and I. V. Melchakova, "High impedance surfaces having resonance with respect to polarization and incident angle," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 908-914, 2005.
doi:10.1109/TAP.2004.842598

21. Lin, B.-Q., Q.-R. Zheng, and N.-C. Yuan, "A novel planar PBG structure for size reduction," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 5, 269-271, May 2006.
doi:10.1109/LMWC.2006.873492

22. Alam, M. S. and M. T. Islam, "Design of a wideband compact Electromagnetic Band Gap structure for lower frequency applications," Przeglad Elektrotechniczny, ISSN 0033-2097, R. 89 NR 4/2013.

23. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2691-2703, 2003.
doi:10.1109/TAP.2003.817559


© Copyright 2010 EMW Publishing. All Rights Reserved