Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 73 > pp. 71-79


By M. Azam, I. Toqeer, A. Ghaffar, M. Y. Naz, M. A. S. Alkanhal, and Y. Khan

Full Article PDF (274 KB)

A theoretical investigation of the interaction of electromagnetic plane waves with a uniaxial crystal slab, bounded by two graphene layers from both sides, placed in free space is presented in this paper. An 8×8 matrix method is developed using boundary conditions at a graphene-uniaxial anisotropic crystal interface and a uniaxial anisotropic crystal-graphene interface. The developed matrix is used to find reflection and transmission coefficients by Crammer's rule. Numerical results are presented to demonstrate the effect of frequency of the incident wave, thickness of the uniaxial crystal slab, and Fermi energy of the graphene on the reflected and transmitted energies. The presented formulations and results are confirmed by published results of some limited cases.

M. Azam, I. Toqeer, A. Ghaffar, M. Y. Naz, M. A. S. Alkanhal, and Y. Khan, "Electromagnetic Wave Reflectance, Transmittance, and Absorption in a Graphene-Covered Uniaxial Crystal Slab," Progress In Electromagnetics Research M, Vol. 73, 71-79, 2018.

1. Gusynin, V., S. Sharapov, and J. Carbotte, "Anomalous absorption line in the magneto-optical response of graphene," Physical Review Letters, Vol. 98, 157402, 2007.

2. Koppens, F. H., D. E. Chang, and F. J. Garcia de Abajo, "Graphene plasmonics: A platform for strong light–matter interactions," Nano Letters, Vol. 11, 3370-3377, 2011.

3. Nair, R., P. Blake, A. Grigorenko, K. Novoselov, T. Booth, T. Stauber, N. Peres, and A. Geim, "Fine structure constant defines visual transparency of graphene," Science, Vol. 320, 1308-1308, 2008.

4. Li, Y., F. Kong, and K. Li, "Graphene-based infrared lens with tunable focal length," Progress In Electromagnetics Research, Vol. 155, 19-26, 2016.

5. Mikhailov, S. and K. Ziegler, "New electromagnetic mode in graphene," Physical Review Letters, Vol. 99, 016803, 2007.

6. Ziegler, K., "Robust transport properties in graphene," Physical Review Letters, Vol. 97, 266802, 2006.

7. Correas-Serrano, D., J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Alvarez-Melcon, "Graphenebased plasmonic tunable low-pass filters in the terahertz band," IEEE Transactions on Nanotechnology, Vol. 13, 1145-1153, 2014.

8. Abbas, F., A. Lakhtakia, Q. A. Naqvi, and M. Faryad, "An optical-sensing modality that exploits Dyakonov-Tamm waves," Photonics Research, Vol. 3, 5-8, 2015.

9. Wu, Y., M. Qu, Y. Liu, and Z. Ghassemlooy, "A broadband graphene-based THz coupler with wide-range tunable power-dividing ratios," Plasmonics, Vol. 12, 1487-1492, 2017.

10. Kong, M., Y. Wu, Z. Zhuang, W. Wang, and Y. Liu, "Graphene-based THz tunable bandstop filter with constant absolute bandwidth," Progress In Electromagnetics Research Letters, Vol. 71, 141-147, 2017.

11. Wu, H.-Q., C.-Y. Linghu, H.-M. Lu, and H. Qian, "Graphene applications in electronic and optoelectronic devices and circuits," Chinese Physics B, Vol. 22, 098106, 2013.

12. Dash, G., S. R. Pattanaik, and S. Behera, "Graphene for electron devices: The panorama of a decade," IEEE Journal of the Electron Devices Society, Vol. 2, No. 5, 77-104, 2014.

13. Kusmartsev, F., W.Wu, M. Pierpoint, and K. Yung, "Application of graphene within optoelectronic devices and transistors," Applied Spectroscopy and the Science of Nanomaterials, 191-221, Springer, 2015.

14. Kuila, T., S. Bose, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, "Recent advances in graphene-based biosensors," Biosensors and Bioelectronics, Vol. 26, 4637-4648, 2011.

15. Madani, A., S. Zhong, H. Tajalli, S. Roshan Entezar, A. Namdar, and Y. Ma, "Tunable metamaterials made of graphene-liquid crystal multilayers," Progress In Electromagnetics Research, Vol. 143, 545-558, 2013.

16. Peres, N. and E. V. Castro, "Algebraic solution of a graphene layer in transverse electric and perpendicular magnetic fields," Journal of Physics: Condensed Matter, Vol. 19, 406231, 2007.

17. Kuzmin, D. A., I. V. Bychkov, and V. G. Shavrov, "Influence of graphene coating on speckle-pattern rotation of light in gyrotropic optical fiber," Optics Letters, Vol. 40, 890-893, 2015.

18. Stauber, T., N. Peres, and A. Geim, "Optical conductivity of graphene in the visible region of the spectrum," Physical Review B, Vol. 78, 085432, 2008.

19. Wang, G., Z. Gao, G. Wan, S. Lin, P. Yang, and Y. Qin, "Supported high-density magnetic nanoparticles on graphene by atomic layer deposition used as efficient synergistic microwave absorbers,", 2014, DOI: 10.1007/s12274-014-0432-0.

20. Bao, Q., H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, "Broadband graphene polarizer," Nature Photonics, Vol. 5, 411-415, 2011.

21. Nilsson, J., A. C. Neto, F. Guinea, and N. Peres, "Transmission through a biased graphene bilayer barrier," Physical Review B, Vol. 76, 165416, 2007.

22. Jiang, L., Y. Xiang, X. Dai, and S. Wen, "Superluminal pulse reflection from graphene covered lossless dielectric slab," IEEE Journal of Quantum Electronics, Vol. 51, No. 3, 7000106, 2015.

23. Othman, M. A., C. Guclu, and F. Capolino, "Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption," Optics Express, Vol. 21, 7614-7632, 2013.

24. Arrazola, I., R. Hillenbrand, and A. Y. Nikitin, "Plasmons in graphene on uniaxial substrates," Applied Physics Letters, Vol. 104, 011111, 2014.

25. Nikolaenko, A. E., N. Papasimakis, E. Atmatzakis, Z. Luo, Z. X. Shen, F. De Angelis, S. A. Boden, E. Di Fabrizio, and N. I. Zheludev, "Nonlinear graphene metamaterial," Applied Physics Letters, Vol. 100, 181109, 2012.

26. Lekner, J., "Normal-incidence reflection and transmission by uniaxial crystals and crystal plates," Journal of Physics: Condensed Matter, Vol. 4, 1387, 1992.

© Copyright 2010 EMW Publishing. All Rights Reserved