A novel single probe-fed, single-layer, and single-patch triple-band microstrip antenna is presented. By incorporating two identical U-slots in the patch whose length is λd instead of 1/2λd in a conventional patch, three operating bands are achieved. Dual-beam radiation pattern is obtained at the upper band, and a single broadside beam radiation pattern is obtained at each of the lower and middle bands. The antenna's structure is simple. Only by using a single probe-fed point, the impedance matches well at all the three resonant frequencies. The measured and simulated results are in good agreement. The measured lower, middle, and upper bands are centered at 2.442 GHz, 3.505 GHz, and 5.787 GHz, respectively. The measured gains are 6.2 dBi at 2.442 GHz and 5.5 dBi at 3.505 GHz, respectively. At 5.787 GHz, the measured gains for the dual radiation beams are 8.4 dBi directed at 26° and 8.2 dBi directed at -38°, respectively. The proposed antenna can be a candidate for WLAN 2.4 GHz, WLAN 5.8 GHz, and 3.5 GHz of 5G (the fifth-generation mobile communication) operation.
2. Kang, L., H. Wang, X. H. Wang, and X. Shi, "Compact ACS-fed monopole antenna with rectangular SRRS for tri-band operation," Electronics Letters, Vol. 50, 1112-1114, 2014.
doi:10.1049/el.2014.1771
3. Chouti, L., I. Messaoudene, T. A. Denidni, and A. Benghalia, "Triple-band CPW-fed monopole antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 69, 1-7, 2017.
doi:10.2528/PIERL17031910
4. Chen, S. W., D. Y. Wang, and W. H. Tu, "Dual-band/tri-band/broadband CPW-fed stepped-impedance slot dipole antennas," IEEE Transactions on Antennas and Propagation, Vol. 62, 485-490, 2014.
doi:10.1109/TAP.2013.2287523
5. Dang, L., Z. Y. Lei, Y. J. Xie, G. L. Ning, and J. Fan, "A compact microstrip slot triple-band antenna for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1178-1181, 2010.
doi:10.1109/LAWP.2010.2098433
6. Zhang, T., W. Hong, and K. Wu, "A low-profile triple-band triple-polarization antenna with two triangular rings," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 378-381, 2015.
doi:10.1109/LAWP.2014.2365025
7. Katyal, A. and A. Basu, "Compact and broadband stacked microstrip patch antenna for target scanning applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 381-384, 2017.
doi:10.1109/LAWP.2016.2578723
8. Rahman, M. A., E. Nishiyama, and I. Toyoda, "A dual-band slot-embedded microstrip antenna for dual-polarization operation," Progress In Electromagnetics Research M, Vol. 63, 141-149, 2018.
doi:10.2528/PIERM17100501
9. Esfahlani, S. H. S., A. Tavakoli, and P. Dehkhoda, "A compact single-layer dual-band microstrip antenna for satellite applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 931-934, 2011.
doi:10.1109/LAWP.2011.2167121
10. Chen, H., "Single-feed dual-frequency rectangular microstrip antenna with a π-shaped slot," IEE Proceedings - Microwaves, Antennas and Propagation, Vol. 148, 60-64, 2001.
doi:10.1049/ip-map:20010224
11. Fortaki, T., L. Djouane, F. Chebara, and A. Benghalia, "On the dual-frequency behavior of stacked microstrip patches," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 310-313, 2008.
doi:10.1109/LAWP.2008.921344
12. Chen, W., Y. Li, H. Jiang, and Y. Long, "Design of novel tri-frequency microstrip patch antenna with arc slots," Electronics Letters, Vol. 48, 609-611, 2012.
doi:10.1049/el.2012.0975
13. Patel, R. H., A. Desai, and T. K. Upadhyaya, "An electrically small antenna using defected ground structure for RFID, GPS and IEEE 802.11 a/B/G/S applications," Progress In Electromagnetics Research Letters, Vol. 75, 75-81, 2018.
doi:10.2528/PIERL18021901
14. Bao, X. L. and M. J. Ammann, "Compact concentric annular-ring patch antenna for triple-frequency operation," Electronics Letters, Vol. 42, 1129-1130, 2006.
doi:10.1049/el:20062015
15. Kuo-Hui, L., M. A. Ingram, and E. O. Rausch, "Multibeam antennas for indoor wireless communications," IEEE Transactions on Communications, Vol. 50, 192-194, 2002.
doi:10.1109/26.983314
16. Lu, H., F. Liu, Y. Liu, and S. Huang, "Single-layer single-patch wideband dual-beam E-shaped patch antenna," 2017 IEEE 5th International Symposium on Electromagnetic Compatibility, 1-3, (EMC-Beijing), 2017.
17. Chen, C., Y. Guo, and H. Wang, "Wideband symmetrical cross-shaped probe dual-beam microstrip patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 622-625, 2015.
doi:10.1109/LAWP.2014.2375371
18. Chen, S.-H., J.-S. Row, and C.-Y.-D. Sim, "Single-feed square-ring patch antenna with dual-frequency operation," Microwave and Optical Technology Letters, Vol. 49, 991-994, 2007.
doi:10.1002/mop.22308
19. Carver, K. and J. Mink, "Microstrip antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 29, 2-24, 1981.
doi:10.1109/TAP.1981.1142523
20. Lo, Y., D. Solomon, and W. Richards, "Theory and experiment on microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 27, 137-145, 1979.
doi:10.1109/TAP.1979.1142057
21. Liu, S., W. Wu, and D. G. Fang, "Single-feed dual-layer dual-band E-shaped and U-slot patch antenna for wireless communication application," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 468-471, 2016.
doi:10.1109/LAWP.2015.2453329
22. Kuhestani, H., M. Rahimi, Z. Mansouri, F. B. Zarrabi, and R. Ahmadian, "Design of compact patch antenna based on metamaterial for WiMAX applications with circular polarization," Microwave and Optical Technology Letters, Vol. 57, 357-360, 2015.
doi:10.1002/mop.28846
23. Lu, H. X., F. Liu, M. Su, and Y. A. Liu, "Design and analysis of wideband U-slot patch antenna with U-shaped parasitic elements," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, e21202, 2018.
doi:10.1002/mmce.21202