Vol. 77

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-12-08

Microwave Time-Reversal Mirror for Imaging and Hyperthermia Treatment of Breast Tumors

By Saptarshi Mukherjee, Lalita Udpa, Satish Udpa, Edward J. Rothwell, and Yiming Deng
Progress In Electromagnetics Research M, Vol. 77, 1-16, 2019
doi:10.2528/PIERM18092008

Abstract

A time reversal method is proposed for imaging and hyperthermia of tumors in breast tissues. Time reversal is based on the reciprocal nature of the electromagnetic scalar wave equation. Time reversed scattered electric fields recorded by the receiver antenna array are back-propagated in an FDTD assisted numerical model to focus back at tumor locations. The potential of this approach for thermal therapy applications is demonstrated by calculating specific absorption rates associated with the time-reversed electromagnetic fields. Simulation results elucidate the feasibility and robustness of the approach. A pulsed time domain measurement system is developed for conducting experiments to detect and measure heat absorbed by single and multiple tumors inside a simple breast phantom.

Citation


Saptarshi Mukherjee, Lalita Udpa, Satish Udpa, Edward J. Rothwell, and Yiming Deng, "Microwave Time-Reversal Mirror for Imaging and Hyperthermia Treatment of Breast Tumors," Progress In Electromagnetics Research M, Vol. 77, 1-16, 2019.
doi:10.2528/PIERM18092008
http://www.jpier.org/PIERM/pier.php?paper=18092008

References


    1. Fink, M., "Time reversal of ultrasonic fields. I. Basic principles," IEEE Trans. Ultrason., Ferroelect., Freq. Control, Vol. 39, No. 5, 555-566, 1992.
    doi:10.1109/58.156174

    2. Lerosey, G., J. De Rosny, A. Tourin, A. Derode, G. Montaldo, and M. Fink, "Time reversal of electromagnetic waves," Phys. Rev. Lett., Vol. 92, No. 19, 193904, 2004.
    doi:10.1103/PhysRevLett.92.193904

    3. Mukherjee, S., A. Tamburrino, M. Haq, S. Udpa, and L. Udpa, "Far field microwave NDE of composite structures using time reversal mirror," NDT & E International, Vol. 93, 7-17, 2018.
    doi:10.1016/j.ndteint.2017.09.008

    4. Tabar, L., et al., "Reduction in mortality from breast cancer after mass screening with mammography: Randomised trial from the breast cancer screening working group of the swedish national board of health and welfare," The Lancet, Vol. 325, No. 8433, 829-832, 1985.
    doi:10.1016/S0140-6736(85)92204-4

    5. Mettler, F. A., A. C. Upton, C. A. Kelsey, R. N. Ashby, R. D. Rosenberg, and M. N. Linver, "Benefits versus risks from mammography: A critical reasessment," Cancer, Vol. 77, No. 5, 903-909, 1996.
    doi:10.1002/(SICI)1097-0142(19960301)77:5<903::AID-CNCR15>3.0.CO;2-7

    6. Dullum, J. R., E. C. Lewis, and J. A. Mayer, "Rates and correlates of discomfort associated with mammography," Radiology, Vol. 214, No. 2, 547-552, 2000.
    doi:10.1148/radiology.214.2.r00fe23547

    7. Wust, P., B. Hildebrandt, G. Sreenivasa, B. Rau, J. Gellermann, H. Riess, R. Felix, and P. M. Schlag, "Hyperthermia in combined treatment of cancer," The Lancet Oncology, Vol. 3, No. 8, 487-497, 2002.
    doi:10.1016/S1470-2045(02)00818-5

    8. Kowalski, M., B. Behnia, A. G. Webb, and J.-M. Jin, "Optimization of electromagnetic phasedarrays for hyperthermia via magnetic resonance temperature estimation," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 11, 1229-1241, 2002.
    doi:10.1109/TBME.2002.804602

    9. Converse, M., E. J. Bond, S. C. Hagness, and B. D. van Veen, "Ultrawide-band microwave spacetime beamforming for hyperthermia treatment of breast cancer: A computational feasibility study," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1876-1889, 2004.
    doi:10.1109/TMTT.2004.832012

    10. Converse, M., E. J. Bond, B. D. Veen, and C. Hagness, "A computational study of ultra-wideband versus narrowband microwave hyperthermia for breast cancer treatment," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, 2169-2180, 2006.
    doi:10.1109/TMTT.2006.872790

    11. Bond, E. J., X. Li, S. C. Hagness, and B. D. van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1690-1705, 2003.
    doi:10.1109/TAP.2003.815446

    12. Al Shehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah, R. Mahmud, and Z. Awang, "Experimental breast tumor detection using Nn-based UWB imaging," Progress In Electromagnetics Research, Vol. 111, 447-465, 2011.
    doi:10.2528/PIER10110102

    13. O’Halloran, M., E. Jones, and M. Glavin, "Quasi-multistatic mist beamforming for the early detection of breast cancer," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 4, 830-840, 2010.
    doi:10.1109/TBME.2009.2016392

    14. Henty, B. E. and D. D. Stancil, "Multipath-enabled super-resolution for RF and microwave communication using phase-conjugate arrays," Phys. Rev. Lett., Vol. 93, No. 24, 243904, 2004.
    doi:10.1103/PhysRevLett.93.243904

    15. Yavuz, M. E. and F. L. Teixeira, "Full time-domain dort for ultrawideband electromagnetic fields in dispersive, random inhomogeneous media," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, 2305-2315, 2006.
    doi:10.1109/TAP.2006.879196

    16. Akıncı, M. N., M. Çayören, and I. Akduman, "Near-field orthogonality sampling method for microwave imaging: Theory and experimental verification," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 8, 2489-2501, 2016.
    doi:10.1109/TMTT.2016.2585488

    17. Roy Paladhi, P., A. Sinha, A. Tayebi, L. Udpa, and S. S. Udpa, "Improved backpropagation algorithms by exploiting data redundancy in limited-angle diffraction tomography," Progress In Electromagnetics Research B, Vol. 66, 1-13, 2016.
    doi:10.2528/PIERB15120204

    18. Vargas, H. I., W. C. Dooley, R. A. Gardner, K. D. Gonzalez, R. Venegas, S. H. Heywang-Kobrunner, and A. J. Fenn, "Focused microwave phased array thermotherapy for ablation of early-stage breast cancer: Results of thermal dose escalation," Annals of Surgical Oncology, Vol. 11, No. 2, 139-146, 2004.
    doi:10.1245/ASO.2004.03.059

    19. Stang, J., M. Haynes, P. Carson, and M. Moghaddam, "A preclinical system prototype for focused microwave thermal therapy of the breast," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 9, 2431-2438, 2012.
    doi:10.1109/TBME.2012.2199492

    20. Pettinelli, E., A. Di Matteo, E. Mattei, L. Crocco, F. Soldovieri, J. D. Redman, and A. P. Annan, "GPR response from buried pipes: Measurement on field site and tomographic reconstructions," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 8, 2639-2645, 2009.
    doi:10.1109/TGRS.2009.2018301

    21. Thomas, J.-L. and M. A. Fink, "Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: Application to transskull therapy," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 43, No. 6, 1122-1129, 1996.
    doi:10.1109/58.542055

    22. De Rosny, J., G. Lerosey, and M. Fink, "Theory of electromagnetic time-reversal mirrors," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 10, 3139-3149, 2010.
    doi:10.1109/TAP.2010.2052567

    23. Yavuz, M. E. and F. L. Teixeira, "Ultrawideband microwave sensing and imaging using time-reversal techniques: A review," Remote Sensing, Vol. 1, No. 3, 466-495, 2009.
    doi:10.3390/rs1030466

    24. Fink, M., D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J.-L. Thomas, and F. Wu, "Time-reversed acoustics," Rep. Prog. Phys., Vol. 63, No. 12, 1933, 2000.
    doi:10.1088/0034-4885/63/12/202

    25. Leopold, K. A., et al., "Relationships among tumor temperature, treatment time, and histopathological outcome using preoperative hyperthermia with radiation in soft tissue sarcomas," International Journal of Radiation Oncology Biology Physics, Vol. 22, No. 5, 989-998, 1992.
    doi:10.1016/0360-3016(92)90798-M

    26. Zhai, H., S. Sha, V. K. Shenoy, S. Jung, M. Lu, K. Min, S. Lee, and D. S. Ha, "An electronic circuit system for time-reversal of ultra-wideband short impulses based on frequency-domain approach," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 1, 74-86, 2010.
    doi:10.1109/TMTT.2009.2035883

    27. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
    doi:10.1109/TAP.1966.1138693

    28. Klauenberg, B. J. and D. Miklavcic, Radio Frequency Radiation Dosimetry and Its Relationship to the Biological Effects of Electromagnetic Fields, Vol. 82, Springer Science & Business Media, 2012.

    29. Lazebnik, M., et al., "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, No. 20, 6093, 2007.
    doi:10.1088/0031-9155/52/20/002

    30. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies," Indian Journal of Biochemistry & Biophysics, Vol. 21, No. 1, 76-79, 1984.

    31. Prada, C., S. Manneville, D. Spoliansky, and M. Fink, "Decomposition of the time reversal operator: Detection and selective focusing on two scatterers," The Journal of the Acoustical Society of America, Vol. 99, No. 4, 2067-2076, 1996.
    doi:10.1121/1.415393

    32. Lynch, S. P., X. Lei, M. Chavez-MacGregor, L. Hsu, F. Meric-Bernstam, T. A. Buchholz, A. Zhang, G. N. Hortobagyi, V. Valero, and A. M. Gonzalez-Angulo, "Multifocality and multicentricity in breast cancer and survival outcomes," Annals of Oncology, Vol. 23, No. 12, 3063-3069, 2012.
    doi:10.1093/annonc/mds136

    33. Esserman, L. J., D. Wolverton, and N. Hylton, "Integration of breast imaging into cancer management," Current Oncology Reports, Vol. 2, No. 6, 572-581, 2000.
    doi:10.1007/s11912-000-0112-y

    34. Mukherjee, S., A. Tamburrino, L. Udpa, and S. Udpa, "Nde of composite structures using microwave time reversal imaging," 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation, Vol. 1706, 100002, AIP Publishing, 2016.

    35. Mukherjee, S., L. Udpa, S. Udpa, and E. J. Rothwell, "Target localization using microwave time-reversal mirror in reflection mode," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 2, 820-828, 2017.
    doi:10.1109/TAP.2016.2627011

    36. Mukherjee, S., L. Udpa, Y. Deng, P. Chahal, and E. J. Rothwell, "Design of a microwave time reversal mirror for imaging applications," Progress In Electromagnetics Research C, Vol. 77, 155-165, 2017.
    doi:10.2528/PIERC17051805

    37. Lazebnik, M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Physics in Medicine and Biology, Vol. 50, No. 18, 4245, 2005.
    doi:10.1088/0031-9155/50/18/001

    38. Kosmas, P. and C. M. Rappaport, "Time reversal with the FDTD method for microwave breast cancer detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 7, 2317-2323, July 2005.
    doi:10.1109/TMTT.2005.850444

    39. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array experimental results," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1692-1704, 2009.
    doi:10.1109/TAP.2009.2019856

    40. Zhurbenko, V., "Challenges in the design of microwave imaging systems for breast cancer detection," Advances in Electrical and Computer Engineering, Vol. 11, No. 1, 91-96, 2011.
    doi:10.4316/AECE.2011.01015