Vol. 77

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-01-02

A Circularly Polarized Dual-Axis Wide-Angle Rectenna Employing a Dual-Feed Array Antenna with Inclined Patches

By Thet Paing Phyoe, Eisuke Nishiyama, and Ichihiko Toyoda
Progress In Electromagnetics Research M, Vol. 77, 135-145, 2019
doi:10.2528/PIERM18100505

Abstract

In this paper, a novel circularly polarized rectenna using a dual-feed array antenna with inclined patches is proposed to provide a dual-axis wide-angle reception capability. A new conical and pencil dualbeam circularly polarized array antenna integrating planar magic-Ts is designed and fabricated to overcome the polarization and main-beam misalignment between the transmitting and receiving antennas. To improve the rectenna's output power, open stub matching networks are used to achieve the impedance matching between the antenna and rectifying diodes. Two types of circularly polarized dual-axis rectennas which respectively allow the parallel and series connections of two diodes are experimentally evaluated and compared to confirm the wide-angle reception capabilities in the x-z and y-z planes.

Citation


Thet Paing Phyoe, Eisuke Nishiyama, and Ichihiko Toyoda, "A Circularly Polarized Dual-Axis Wide-Angle Rectenna Employing a Dual-Feed Array Antenna with Inclined Patches," Progress In Electromagnetics Research M, Vol. 77, 135-145, 2019.
doi:10.2528/PIERM18100505
http://www.jpier.org/PIERM/pier.php?paper=18100505

References


    1. Brown, W. C., "The history of power transmission by radio wave," IEEE Trans. Microwave Theory & Tech., Vol. 32, No. 9, 1230-1242, 1984.
    doi:10.1109/TMTT.1984.1132833

    2. Akkermans, J. A. G., M. C. V. Beurden, G. J. N. Doodeman, and H. J. Visser, "Analytical models for low-power rectenna design," IEEE Antennas and Wireless Propag. Lett., Vol. 4, 187-190, 2005.
    doi:10.1109/LAWP.2005.850798

    3. Shinohara, N., "Rectenna for microwave power transmission," IEICE Electronics Express, Vol. 10, No. 21, 1-13, 2013.
    doi:10.1587/elex.10.20132009

    4. Olgun, U., C.-C. Chen, and J. L. Volakis, "Investigation of rectenna array configurations for enhanced RF power harvesting," IEEE Anten. and Wireless Propag. Lett., Vol. 10, 262-265, 2011.
    doi:10.1109/LAWP.2011.2136371

    5. Satow, H., E. Nishiyama, and I. Toyoda, "A 5.8-GHz E-plane wide-angle rectenna using magic-Ts," IEICE Trans. Commun. (Japanese Edition), Vol. J99-B, No. 6, 415-423, 2016.

    6. Satow, H., Y. Tanaka, E. Nishiyama, and I. Toyoda, "An H-plane wide-angle rectenna using an in-phase/anti-phase dual-feed antenna," Proc. 2016 Int’l Symp. Antennas and Propag. (ISAP2016), POS1-124, 532–533, Okinawa, Japan, 2016.

    7. Phyoe, T. P., H. Satow, E. Nishiyama, and I. Toyoda, "A dual-axis wide-angle rectenna using a triple-feed array antenna," Proc. 2017 Int’l Symp. Antennas and Propag. (ISAP2017), 2B4, Phuket, Thailand, 2017.

    8. Lee, D.-J., S.-J. Lee, I.-J. Hwang, W.-S. Lee, J.-W. Yu, and K. Chang, "Hybrid power combining rectenna array for wide incident angle coverage in RF energy transfer," IEEE Trans. Microwave Theory & Tech., Vol. 65, No. 9, 3409-3418, 2017.
    doi:10.1109/TMTT.2017.2678498

    9. Strassner, B. and K. Chang, "5.8-GHz circularly polarized dual-rhombic-loop traveling-wave rectifying antenna for low power-density wireless power transmission applications," IEEE Trans. Microwave Theory & Tech., Vol. 51, No. 5, 1548-1553, 2003.
    doi:10.1109/TMTT.2003.810137

    10. Ren, Y.-J. and K. Chang, "New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission," IEEE Trans. Microwave Theory & Tech., Vol. 54, No. 7, 2970-2976, 2006.
    doi:10.1109/TMTT.2006.877422

    11. Phyoe, T. P., E. Nishiyama, and I. Toyoda, "Design of a conical/pencil dual-beam array antenna using planar magic-Ts," Proc. 2017 Asian Workshop on Antennas and Propag. (AWAP2017), 57-58, Sapporo, Japan, 2017.

    12. Phyoe, T. P., E. Nishiyama, and I. Toyoda, "A 5-8-GHz dual-axis monopulse microstrip array antenna using dual-feed network," Proc. 2018 Asia-Pacific Microwave Conf. (APMC2018), FR3-IF-24, Kyoto, Japan, 2018.

    13. Toyoda, I. and E. Nishiyama, "Advanced planar rectenna technology," Proc. 11th Asia-Pacific Eng. Res. Forum on Microwaves and Electromagnetic Theory (APMET2016), 1-7, Nagasaki, Japan, 2016.

    14. Aikawa, M. and H. Ogawa, "Double-sided MICs and their applications," IEEE Trans. Microwave Theory & Tech., Vol. 37, No. 2, 406-413, 1989.
    doi:10.1109/22.20068

    15. Aikawa, M. and E. Nishiyama, "Compact MIC magic-T and the integration with planar array antenna," IEICE Trans. Electron., Vol. E95-C, No. 10, 1560-1565, 2012.
    doi:10.1587/transele.E95.C.1560

    16. Toyoda, I. and E. Nishiyama, "Rectenna design using electromagnetic field simulation including nonlinear devices," Proc. 2017 IEEE Int’l Conf. Computational Electromagnetics (ICCEM2017), 2B1.5, 130–132, Kumamoto, Japan, 2017.

    17. Takahashi, J., E. Nishiyama, and I. Toyoda, "A differential rectenna with matching shorted stubs," Proc. 2015 IEEE 4th Asia-Pacific Conf. Antennas and Propag. (APCAP2015), 445-446, Bail Island, Indonesia, 2015.

    18. Takahashi, J., E. Nishiyama, and I. Toyoda, "Experimental study on load resistance design of a differential rectenna," Proc. 2015 Int’l Symp. Antennas and Propag. (ISAP2015), S1.4.1, 223–225, Hobart, Australia, 2015.

    19. Phyoe, T. P., H. Satow, E. Nishiyama, and I. Toyoda, "Design of a dual-axis wide-angle rectenna with matching networks," Proc. 2017 Int’l Conf. Science and Engineering (ICSE2017), 395-398, Yangon, Myanmar, 2017.