Vol. 78
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-01-25
An Airborne VHF Printed Monopole Antenna for Platform Constrained Applications
By
Progress In Electromagnetics Research M, Vol. 78, 103-113, 2019
Abstract
Major challenges faced by airborne VHF monopole antennas are to achieve wideband characteristics in permissible antenna height and to find the apt location for mounting, so as to satisfy sufficient ground plane around its feed point. The increased applications of electromagnetic spectrum result in a large number of antennas competing in the limited space available on platform. The asymmetries and curved surfaces on the platform as well as the limited size of the available ground plane may result in an insufficient ground plane for these antennas on platform. The deficient ground plane can deteriorate the radiation characteristics of antenna. Printed monopole antenna, which does not require a backing ground plane, can overcome this deficiency, as the ground planes of these antennas are implemented in the same plane as that of the radiating element. This paper proposes a wideband printed monopole VHF antenna for airborne applications, which simultaneously achieves reduced height and reduced ground plane on platform. The antenna has a size of 0.1045λ × 0.1272λ × 0.072λ, where λ is the free space wavelength at lowest frequency of operation, and it achieves a 3:1 VSWR bandwidth of 38%. The radiation characteristics and size of the proposed antenna are comparable to the conventional airborne blade monopole antenna with the added advantage of requiring minimal ground plane to mount on.
Citation
Mary Rani Abraham, Sona O. Kundukulam, and Aanandan Chandroth, "An Airborne VHF Printed Monopole Antenna for Platform Constrained Applications," Progress In Electromagnetics Research M, Vol. 78, 103-113, 2019.
doi:10.2528/PIERM18102701
References

1. Macnamara, T. M., Introduction to Antenna Placement and Installation, John Wiley & Sons, Ltd., United Kingdom, 2010.
doi:10.1002/9780470686874

2. Best, S. R., "The significance of ground plane size and antenna location in establishing the performance of ground-plane-dependent antennas," IEEE Antennas and Propagation Magazine, Vol. 51, No. 6, 29-43, December 2009.
doi:10.1109/MAP.2009.5433095

3. Burnside, W. D. and R. J. Marhefka, "Antennas on aircraft, ships, or any large, complex environment," Antenna Handbook, Y. T. Lo, S. W. Lee (eds), Springer, Boston, MA, 1988.

4. McLean, J., M. Leuvano, and H. Foltz, "Reduced-size, folded ground plane for use with low-profile, broadband monopole antennas," Radio and Wireless Conference, August 1999.

5. Lim, S., R. L. Rogers, and H. Ling, "Ground plane size reduction in monopole antennas for ground wave transmission," IEEE Antennas and Propagation Society International Symposium, Vol. 1B, 406-409, 2005.
doi:10.1109/APS.2005.1551578

6. Johnson, J. M. and Y. Rahmat-Samii, "The tab monopole," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 1, 187-188, January 1997.
doi:10.1109/8.554262

7. Zhai, H., D. Yang, L. Xi, and D. Feng, "A new CPW-fed broadband circularly polarized printed monopole antenna for UWB application," Microwave and Optical Technology Letters, Vol. 60, No. 2, 364-369, February 2018.
doi:10.1002/mop.30972

8. Lee, R. Q. and K. Chun, "Compact miniaturized antenna for 210 MHz RFID," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, San Diego, CA, July 2008.

9. Loutridis, A., M. John, and M. J. Ammann, "Folded meander line antenna for wireless M-bus in the VHF and UHF bands," Electronics Letters, Vol. 51, No. 15, 1138-1140, July 2015.
doi:10.1049/el.2015.1844

10. Ripin, N., M. S. Zaman, A. A. Sulaiman, N. E. Rashid, M. F. Hussin, W. Z. Ibrahim, and N. N. Ismail, "Small and compact double E-shaped meander line monopole antenna for forward scatter radar network," Journal of Telecommunication, Electronic and Computer Engineering (JTEC), Vol. 10, No. 1-6, 127-132, February 5, 2018.

11. Zhang, Y. and I. Glover, "Design of an ultrawideband VHF/UHF antenna for partial discharge detection," 2014 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 487-490, Guilin, 2014.

12. Qiang, Y., W. Wang, and Y. Yao, "A printed ultra-wideband antenna with C-shaped ground plane for pattern stability," 2016 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 749-751, Beijing, 2016.
doi:10.1109/ICMMT.2016.7762430

13. Kim, T. H., Y. Kim, T. H. Yoo, and J. G. Yook, "Wideband planar monopole antenna for digital TV reception and UHF band communications," IET Microwaves, Antennas & Propagation, Vol. 12, No. 13, 2041-2045, October 31, 2018.
doi:10.1049/iet-map.2018.5076

14. Ammann, M. J. and M. John, "Optimum design of the printed strip monopole," IEEE Antennas and Propagation Magazine, Vol. 47, No. 6, 59-61, December 2005.
doi:10.1109/MAP.2005.1608721

15. Endo, T., Y. Sunahara, S. Satoh, and T. Katagi, "Resonant frequency and radiation efficiency of meander line antennas," Electronics and Communications in Japan (Part. II, Electronics), Vol. 83, No. 1, 52-58, January 2000.
doi:10.1002/(SICI)1520-6432(200001)83:1<52::AID-ECJB7>3.0.CO;2-7

16. Deepak, B. S., K. Takeshore, P. R. Kumar, and C. Sairam, "Design of a wideband blade monopole antenna in 135-175 MHz band," Progress In Electromagnetics Research Letters, Vol. 68, 25-32, 2017.

17. Ray, K. P., "Design aspects of printed monopole antennas for ultra-wide band applications," International Journal of Antennas and Propagation, Vol. 2008, 8 pages, Article ID 713858, 2008.