Vol. 77

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-12-25

Triple-Band Polarization-Independent Ultrathin Metamaterial Absorber

By Hailin Cao, Meng Shan, Tao Chen, Jianmei Lei, Linhua Yang, and Xiaoheng Tan
Progress In Electromagnetics Research M, Vol. 77, 93-102, 2019
doi:10.2528/PIERM18110602

Abstract

A novel triple-band ultrathin metamaterial absorber (MA) with polarization independence is designed, characterized and realized in this study. The designed absorber consists of three layers. The top metallic patch is patterned in an ultrathin dielectric substrate that is backed with a ground metallic plate. The numerical simulation results show that the presented metamaterial absorber exhibits three distinct absorption peaks of 99.95%, 99.28% and 96.36% under normal incidence at frequencies of 8.115, 11.4 and 15.12 GHz, respectively. Due to its fourfold symmetry, the absorbing properties are independent of the polarization of the incident radiation angle. Moreover, in the cases of TE and TM polarization modes, the proposed absorber displays an outstanding absorption response over a wide range of incident angles. The physical mechanism of the absorption performance is explained by investigating the surface current and field distributions at three distinct absorption peaks. Furthermore, the presented absorber is practically validated by the excellent agreement observed between the experimental and simulated results. The designed absorber has an ultrathin thickness of 1 mm, which is 0.027λ0 with respect to the lowest peak absorption frequency, and can be useful for several potential applications, such as electromagnetic compatibility, stealth technology and super lenses.

Citation


Hailin Cao, Meng Shan, Tao Chen, Jianmei Lei, Linhua Yang, and Xiaoheng Tan, "Triple-Band Polarization-Independent Ultrathin Metamaterial Absorber," Progress In Electromagnetics Research M, Vol. 77, 93-102, 2019.
doi:10.2528/PIERM18110602
http://www.jpier.org/PIERM/pier.php?paper=18110602

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Shalaev, V. M., W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Optics Letters, Vol. 30, No. 24, 3356-3358, 2005.
    doi:10.1364/OL.30.003356

    3. Zhang, W., J.-Y. Li, and J. Xie, "High sensitivity refractive index sensor based on metamaterial absorber," Progress In Electromagnetics Research M, Vol. 71, 107-115, 2018.
    doi:10.2528/PIERM18042903

    4. Liu, Y., Y. Chen, J. Li, T. C. Hung, and J. Li, "Study of energy absorption on solar cell using metamaterials," Solar Energy, Vol. 86, No. 5, 1586-1599, 2012.
    doi:10.1016/j.solener.2012.02.021

    5. Rufangura, P. and C. Sabah, "Perfect metamaterial absorber for applications in sustainable and high-efficiency solar cells," Journal of Nanophotonics, Vol. 12, No. 2, 26002, 2018.
    doi:10.1117/1.JNP.12.026002

    6. Mishra, N. and R. K. Chaudhary, "A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications," Microwave and Optical Technology Letters, Vol. 58, No. 1, 71-75, 2016.
    doi:10.1002/mop.29494

    7. Mishra, P. and S. S. Pattnaik, "Metamaterial loaded fractal based interdigital capacitor antenna for communication systems," Progress In Electromagnetics Research M, Vol. 70, 127-134, 2018.

    8. Chen, H., B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, "Ray-optics cloaking devices for large objects in incoherent natural light," Nature Communications, Vol. 4, 2652, 2013.
    doi:10.1038/ncomms3652

    9. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
    doi:10.1126/science.1125907

    10. Lee, S. H., M. Choi, T. T. Kim, S. Lee, M. Liu, X. Yin, and X. Zhang, "Switching terahertz waves with gate-controlled active graphene metamaterials," Nature Materials, Vol. 11, No. 1, 936, 2012.
    doi:10.1038/nmat3433

    11. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, No. 19, 10927-10940, 2014.
    doi:10.1039/C4NR03143A

    12. Mitrofanov, O., L. Viti, E. Dardanis, M. C. Giordano, D. Ercolani, A. Politano, and M. S. Vitiello, "Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging," Scientific Reports, Vol. 7, 44240, 2017.
    doi:10.1038/srep44240

    13. Politano, A., L. Viti, and M. S. Vitiello, "Optoelectronic devices, plasmonics, and photonics with topological insulators," APL Materials, Vol. 5, No. 3, 035504, 2017.
    doi:10.1063/1.4977782

    14. Yang, Q., J. Gu, D. Wang, X. Zhang, Z. Tian, C. Ouyang, and W. Zhang, "Efficient flat metasurface lens for terahertz imaging," Optics Express, Vol. 22, No. 21, 25931-25939, 2014.
    doi:10.1364/OE.22.025931

    15. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 10, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    16. Yang, C., H. Xiong, and X. P. Li, "Investigation of a metamaterial absorber by using reflection theory model," Progress In Electromagnetics Research M, Vol. 59, 65-73, 2017.

    17. Ramya, S. and I. Srinivasa Rao, "Design of polarization-insensitive dual band metamaterial absorber," Progress In Electromagnetics Research M, Vol. 50, 23-31, 2016.
    doi:10.2528/PIERM16070501

    18. Smith, D. R., W. J. Padilla, and D. C. Vier, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 10, 4184-4187, 2016.

    19. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773-4776, 1996.
    doi:10.1103/PhysRevLett.76.4773

    20. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Member Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
    doi:10.1109/22.798002

    21. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incident terahertz metamaterial absorber: Design, fabrication, and characterization," Physical Review B, Vol. 78, No. 24, 2008.
    doi:10.1103/PhysRevB.78.241103

    22. Ayop, O., M. K. A. Rahim, and N. A. Murad, "Polarization-independent metamaterial absorber for single band and multi-band frequency," Jurnal Teknologi, Vol. 77, No. 10, 99-106, 2015.

    23. Bagci, F. and F. Medina, "Design of a wide-angle, polarization insensitive, dual-band metamaterial-inspired absorber with the aid ofequivalent circuit model," Journal of Computational Electronics, Vol. 16, No. 3, 913-921, 2017.
    doi:10.1007/s10825-017-1009-4

    24. Ayop, O. B., M. K. Abd Rahim, N. A. Murad, N. A. Samsuri, and R. Dewan, "Triple band circular ring-shaped metamaterial absorber for x-band applications," Progress In Electromagnetics Research M, Vol. 39, 65-75, 2014.
    doi:10.2528/PIERM14052402

    25. Zhai, H., C. Zhan, Z. Li, and C. Liang, "A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability," IEEE Antennas and Wireless Propagation Letters, 241-244, 2015.
    doi:10.1109/LAWP.2014.2361011

    26. Bian, B., S. Liu, S. Wang, X. Kong, H. Zhang, B. Ma, and H. Yang, "Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber," Journal of Applied Physics, Vol. 114, No. 10, 194511, 2013.
    doi:10.1063/1.4832785

    27. Ling, X., Z. Xiao, X. Zheng, J. Tang, and K. Xu, "Ultra-broadband metamaterial absorber based on the structure of resistive films," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 17, 2325-2333, 2017.
    doi:10.1080/09205071.2016.1246211

    28. Shen, G., M. Zhang, Y. Ji, W. Huang, H. Yu, and J. Shi, "Broadband terahertz metamaterial absorber based on simple multi-ring structures," AIP Advances, Vol. 8, No. 7, 075206, 2018.
    doi:10.1063/1.5024606

    29. Agrawal, A., M. Misra, and A. Singh, "Oblique incidence and polarization insensitive multiband metamaterial absorber with quad paired concentric continuous ring resonators," Progress In Electromagnetics Research M, Vol. 60, 33-46, 2017.
    doi:10.2528/PIERM17061302

    30. Lu, L., S. Qu, H. Ma, F. Yu, S. Xia, Z. Xu, and P. Bai, "A polarization-independent wide-angle dual directional absorption metamaterial absorber," Progress In Electromagnetics Research M, Vol. 27, 91-201, 2012.
    doi:10.2528/PIERM12102101

    31. Agarwal, M., A. K. Behera, and M. K. Meshram, "Wide-angle quad-band polarisation-insensitive metamaterial absorber," Electronics Letters, Vol. 52, No. 5, 340-342, 2016.
    doi:10.1049/el.2015.4134

    32. Sood, D. and C. C. Tripathi, "A wideband wide-angle ultra-thin metamaterial microwave absorber," Progress In Electromagnetics Research M, Vol. 44, 39-46, 2015.
    doi:10.2528/PIERM15082903

    33. Panaretos, A. H., D. E. Brocker, and D. H. Werner, "Ultra-thin absorbers comprised by cascaded high-impedance and frequency selective surfaces," IEEE Antennas Wireless Propagation Letters, Vol. 14, 1089-1092, 2015.
    doi:10.1109/LAWP.2015.2390145

    34. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Bandwidth-enhancement of an ultrathin polarization insensitive metamaterial absorber," Microwave and Optical Technology Letters, Vol. 56, No. 2, 350-355, 2013.
    doi:10.1002/mop.28122

    35. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.
    doi:10.2528/PIER10122401

    36. Smith, D. R., D. C. Vier, T. Koschny, C. M., and Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, 2005.
    doi:10.1103/PhysRevE.71.036617

    37. Liu, J., Q. Zhou, Y. Shi, X. Zhao, and C. Zhang, "Study of L-shaped resonators at terahertz frequencies," Applied Physics Letters, Vol. 103, No. 24, 241911, 2013.
    doi:10.1063/1.4847295