PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 79 > pp. 147-157

A COMPACT ENDFIRE RADIATION ANTENNA BASED ON SPOOF SURFACE PLASMON POLARITONS IN WIDE BANDWIDTH

By K. Zhuang, J.-P. Geng, Z. Ding, X. Zhao, W. Ma, H. Zhou, C. Xie, X. Liang, and R.-H. Jin

Full Article PDF (444 KB)

Abstract:
A compact slot-coupled endfire radiation antenna based on a tapering spoof surface plasmon polaritons (SSPPs) structure with high efficiency is proposed in this paper. A narrow slot balun is designed to feed the SSPPs structure rather than to work as the primary radiator. Simulated results show that the odd SPP mode is successfully excited on the tapering SSPPs structure, which contributes to the endfire radiation. Due to the high confinement of SSPPs, the proposed antenna shows low RCS within the frequency band of 1.5 GHz-4 GHz and 5.6 GHz-8 GHz. A prototype is fabricated and tested. Simulated and measured results show good agreement that the proposed antenna can provide stable endfire radiation patterns within the frequency band of 2 GHz-3.4 GHz. The maximum gain reaches 8 dBi, and the average efficiency over this bandwidth is 80%. The high-efficiency endfire SSPPs antenna with balanced broad band and high gain has a promising application in communication systems and integrated circuits.

Citation:
K. Zhuang, J.-P. Geng, Z. Ding, X. Zhao, W. Ma, H. Zhou, C. Xie, X. Liang, and R.-H. Jin, "A Compact Endfire Radiation Antenna Based on Spoof Surface Plasmon Polaritons in Wide Bandwidth," Progress In Electromagnetics Research M, Vol. 79, 147-157, 2019.
doi:10.2528/PIERM18121408

References:
1. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature, Vol. 424, 824-830, Aug. 2003.

2. Sarkar, T. K., et al., "Surface plasmons/polaritons, surface waves, and zenneck waves: Clarification of the terms and a description of the concepts and their evolution," IEEE Antennas & Propagation Magazine, Vol. 59, 77-93, Jun. 2017.

3. Grigorenko, A. N., M. Polini, and K. S. Novoselov, "Graphene plasmonics," Nat. Photonics, Vol. 6, 749-758, Nov. 2012.

4. Politano, A., G. Chiarello, and C. Spinella, "Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy," Mater. Sci. Semicond. Process., Vol. 65, 88-99, Jul. 2017.

5. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927-10940, Jul. 2014.

6. Tassin, P., T. Koschny, M. Kafesaki, and G. M. Soukoulis, "A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics," Nat. Photonics, Vol. 6, 259-264, Mar. 2012.

7. Bao, Q. and K. P. Loh, "Graphene photonics, plasmonics, and broadband optoelectronic devices," ACS Nano, Vol. 6, No. 5, 3677-3694, Apr. 2012.

8. Koppens, F. H. L., D. E. Chang, and F. J. G. D. Abajo, "Graphene plasmonics: A platform for strong light-matter interactions," Nano Lett., Vol. 11, No. 8, 3370-3377, Jul. 2011.

9. Politano, A., L. Viti, and M. S. Vitiello, "Optoelectronic devices, plasmonics, and photonics with topological insulators," APL Materials, Vol. 5, Feb. 2017.

10. Viti, L., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Sci. Rep., Vol. 6, Feb. 2016.

11. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Lett., Vol. 16, No. 1, 80-87, Dec. 2015.

12. Berry, C. W., N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, "Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes," Nat. Commun., Vol. 4, Mar. 2013.

13. Tang, W., A. Politano, C. Guo, W. Guo, C. Liu, L. Wang, X. Chen, and W. Lu, "Ultrasensitive room temperature terahertz direct detection based on a bismuth selenide topological insulator," Adv. Funct., Vol. 28, No. 31, Aug. 2018.

14. Agarwal, A., M. S. Vitiello, L. Viti, A. Cupolilloc, and A. Politano, "Plasmonics with two-dimensional semiconductors: from basic research to technological applications," Nanoscale, Vol. 10, 8938-8946, May 2018.

15. Ali, M. R. K., H. R. Ali, C. R. Rankin, and M. A. El-Sayed, "Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy," Biomaterials, Vol. 102, 1-8, Sep. 2016.

16. Law, W. C., K. T. Yong, A. Bae, and P. N. Prasad, "Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement," ACS Nano, Vol. 5, No. 6, 4858-4864, Apr. 2011.

17. Zhang, J. Z., "Biomedical applications of shape-controlled plasmonic nanostructures: A case study of hollow gold nanospheres for photothermal ablation therapy of cancer," J. Phys. Chem. Lett., Vol. 1, No. 4, 686-695, Jan. 2010.

18. Wang, H. N. and T. Vo-Dinh, "Multiplex detection of breast cancer biomarkers using plasmonic molecular sentinel nanoprobes," Nanotechnology, Vol. 20, No. 6, Jan. 2009.

19. Politano, A., G. D. Profio, E. Fontananova, V. Sanna, A. Cupolillo, and E. Curcio, "Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes," Desalination, Vol. 451, 192-199, Feb. 2019.

20. Politano, A., P. Argurio, G. D. Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H. A. Arafat, and E. Curcio, "Photothermal membrane distillation for seawater desalination," Adv. Mater., Vol. 29, No. 2, Jan. 2017.

21. Politano, A., A. Cupolillo, G. Di Profio, H. A. Arafat, G. Chiarello, and E. Curcio, "When plasmonics meets membrane technology," J. Phys.: Condens. Matter, Vol. 28, No. 36, Jul. 2016.

22. Park, K. D. and M. B. Raschke, "Polarization control with plasmonic antenna tips: A universal approach to optical nano-crystallography and vector-field imaging," Nano Lett., Vol. 18, No. 5, 2912-2917, Mar. 2018.

23. Xu, W., T. K. Lee, B. S. Moon, H. Song, X. Chen, B. Chun, Y. J. Kim, S. K. Kwak, P. Chen, and D. H. Kim, "Broadband plasmonic antenna enhanced upconversion and its application in flexible fingerprint identification," Adv. Opt. Mater., Vol. 6, No. 6, Mar. 2018.

24. Vercruysse, D., P. Neutens, L. Lagae, N. Verellen, and P. V. Dorpe, "Single asymmetric plasmonic antenna as a directional coupler to a dielectric waveguide," ACS Photonics, Vol. 4, No. 6, 1298-1402, Apr. 2017.

25. Viti, L., J. Hu, D. Coquillat, W. Knap, A. Tredicucci, A. Polotano, and M. S. Vitiello, "Black phosphorus terahertz photodetectors," Adv. Mater., Vol. 27, 5567-5572, May 2018.

26. Pendry, J., L. Martin-Moreno, and F. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science, Vol. 305, 847-848, 2004.

27. Maier, S. A., S. R. Andrews, L. Martin-Moreno, and F. Garcia-Vidal, "Terahertz surface plasmon-polariton propagation and focusing on peri-odically corrugated metal wires," Phys. Rev. Lett., Vol. 97, Oct. 2006.

28. Kianinejad, A., Z. N. Chen, and C. W. Qiu, "Low-loss spoof surface plasmon slow-wave transmission lines with compact transition and high isolation," IEEE Transactions on Microwave Theory Techniques, Vol. 64, No. 10, 3078-3086, 2016.

29. Liu, L., et al., "Dual-band trapping of spoof surface plasmon polaritons and negative group velocity realization through microstrip line with gradient holes," Applied Physics Letters, Vol. 107, No. 20, 2015.

30. Gao, X., L. Zhou, and T. J. Cui, "Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial," Scientific Reports, 2015.

31. Yin, J. Y., J. Ren, H. C. Zhang, B. C. Pan, and T. J. Cui, "Broadband frequency-selective spoof surface plasmon polaritons on ultrathin metallic structure," Sci. Rep., Vol. 5, 2015.

32. Pan, B. C., Z. Liao, J. Zhao, and T. J. Cui, "Controlling rejections of spoof surface plasmon polaritons using metamaterial particles," Opt. Express, Vol. 22, 13940-13950, Jun. 2014.

33. Wu, J. J., D. J. Hou, T. Yang, I. Hsieh, Y. Kao, and H. Lin, "Bandpass filter based on low frequency spoof surface plasmon polaritons," Electron. Lett., Vol. 48, 269-270, Mar. 2012.

34. Shibayama, J., J. Yamauchi, and H. Nakano, "Metal disc-type splitter with radially placed gratings for terahertz surface waves," Electron. Lett., Vol. 51, 352-353, Feb. 2015.

35. Shen, X., G. Moreno, A. Chahadih, T. Akalin, and T. J. Cui, "Spoof surface plasmonic devices and circuits in THz frequency," IRMMW-THz, 1, 2014.

36. Zhou, Y. J., X. X. Yang, and T. J. Cui, "A multidirectional frequency splitter with band-stop plasmonic filters," Journal of Applied Physics, Vol. 115, No. 12, 2014.

37. Liao, D., Y. Zhang, and H. G. Wang, "Wide-angle frequency-controlled beam scanning antenna fed by standing wave based on the cut-off characteristics of spoof surface plasmon polaritons," IEEE Antennas & Wireless Propagation Letters, Vol. 17, No. 7, Jul. 2018.

38. Zhang, Q., Q. Zhang, and Y. Chen, "Spoof surface plasmon polariton leaky-wave antennas using periodically loaded patches above PEC and AMC ground planes," IEEE Antennas Wireless Propag. Lett., Vol. 16, 3014-3017, 2017.

39. Gu, S. K., H. F. Ma, B. G. Cai, and T. J. Cui, "Continuous leaky-wave scanning using periodically modulated spoof plasmonic waveguide," Scientific Reports, Vol. 6, 29600, 2016.

40. Kandwal, A., Q. Zhang, X. Tang, L. W. Liu, and G. Zhang, "Low-profile spoof surface plasmon polaritons traveling-wave antenna for endfire radiation," IEEE Antennas Wireless Propag. Lett., Vol. 17, No. 2, 184-187, 2017.

41. Han, Y. J., et al., "360˚ scanning multi-beam antenna based on spoof surface plasmon polaritons," Acta Physica Sinica, Vol. 65, No. 14, 2016.

42. Yin, J. Y., D. Bao, J. Ren, H. C. Zhang, B. C. Pan, Y. Fan, and T. J. Cui, "Endfire radiations of spoof surface plasmon polaritons," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 597-600, 2017.

43. Yin, J. Y., et al., "Direct radiations of surface plasmon polariton waves by gradient groove depth and flaring metal structure," IEEE Antennas & Wireless Propagation Letters, Vol. 15, 865-868, 2016.

44. Dong, W., et al., "A high efficiency broadband omnidirectional UHF patch antenna applying surface plasmon polaritons for handheld terminals," IEEE Antennas & Wireless Propagation Letters, Vol. 17, 283-286, 2018.

45. Dong, W., et al., "A novel patch antenna based on surface plasma polarization," The 5th International Symposium on Electromagnetic Compatibility, EMC, Beijing, Oct. 2017.

46. Dong, W., et al., "A surface plasmon polariton inspired patch antenna," IEEE APS, San Diago, 2017.

47. Zhuang, K., et al., "Spoof surface plasmon polaritons pattern reconfigurable antenna for wide-angle coverage," IEEE APS, 2018.

48. Zhang, J., L. Cai, W. Bai, Y. Xu, and G. Song, "Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide," Journal of Applied Physics, Vol. 106, No. 10, Nov. 2009.

49. Xiang, H., Y. Meng, Q. Zhang, F. F. Qin, J. J. Xiao, D. Han, and W. Wen, "Spoof surface plasmon polaritons on ultrathin metal strips with tapered grooves," Optics Communications, Vol. 356, No. 1, 59-63, Dec. 2015.

50. Zhang, Y., E. Li, C. Wang, and G. Guo, "Radiation enhanced Vivaldi antenna with double-antipodal structure," IEEE Antennas & Wireless Propagation Letters, Vol. 16, No. 99, 561-564, 2017.

51. Liu, Y., W. Zhou, S. Yang, W. Li, P. Li, and S. Yang, "A novel miniaturized vivaldi antenna using tapered slot edge with resonant cavity structure for ultra-wide band applications," IEEE Antennas and Wireless Propagation Letters, 2016.

52. Kianinejad, A., Z. N. Chen, and C.-W. Qiu, "Design and modeling of spoof surface plasmon modes-based microwave slow-wave trans-mission line," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 6, 1817-1825, Jun. 2015.


© Copyright 2010 EMW Publishing. All Rights Reserved