PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 79 > pp. 11-22

DESIGN AND ANALYSIS OF COMPACT µ-NEGATIVE MATERIAL LOADED WIDEBAND ELECTRICALLY COMPACT ANTENNA FOR WLAN/WIMAX APPLICATIONS

By U. Patel and T. K. Upadhyaya

Full Article PDF (792 KB)

Abstract:
A compact tri-band antenna incorporated with split ring resonator array is proposed for Wireless Local Area Network (WLAN) and Worldwide interoperability for microwave access (WiMAX) applications. The proposed antenna is printed on an FR4 substrate with overall dimensions of 0.25λx0.29λ at the lowest frequency. Impedance bandwidth of the antenna is optimised by introducing slots on the top of the patch. The ground plane is engineered by placement of a split ring resonators array to induce additional resonance due to occurance of magnetic dipole moment.The antenna resonates at the frequencies of 2.4 GHz, 3.5 GHz & 5.5 GHz having bandwidths of 12.5%, 7.42% and 6.36% with gains of 2.25 dBi, 3.72 dBi and 2.71 dBi, respectively which matches well with the fabricated results. The proposed antenna shows omnidirectional radiation pattern which makes it appropriate for WLAN and WiMAX applications.

Citation:
U. Patel and T. K. Upadhyaya, "Design and Analysis of Compact µ-Negative Material Loaded Wideband Electrically Compact Antenna for WLAN/WiMAX Applications," Progress In Electromagnetics Research M, Vol. 79, 11-22, 2019.
doi:10.2528/PIERM18121502

References:
1. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.

2. Waterhouse, R., Microstrip Patch Antennas: A Designer’s Guide, Springer Science & Business Media, 2013.

3. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band-gap Structures in Antenna Engineering (The Cambridge RF and Microwave Engineering Series), Cambridge University Press, 2008.

4. Smith, D. R. and N. Kroll, "Negative refractive index in left-handed materials," Physical Review Letters, Vol. 85, No. 14, 2933, 2000.
doi:10.1103/PhysRevLett.85.2933

5. Alibakhshi-Kenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "Bandwidth and radiation specifications enhancement of monopole antennas loaded with split ring resonators," IET Microwaves, Antennas & Propagation, Vol. 9, No. 14, 1487-1496, 2015.
doi:10.1049/iet-map.2015.0172

6. Alù, A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, 13-25, 2007.
doi:10.1109/TAP.2006.888401

7. Islam, M. M., M. T. Islam, M. Samsuzzaman, M. R. I. Faruque, N. Misran, and M. F. Mansor, "A miniaturized antenna with negative index metamaterial based on modified SRR and CLS unit cell for UWB microwave imaging applications," Materials, Vol. 8, No. 2, 392-407, 2015.
doi:10.3390/ma8020392

8. Upadhyaya, T. K., V. V. Dwivedi, S. P. Kosta, and Y. P. Kosta, "Miniaturization of tri band patch antenna using metamaterials," 2012 Fourth International Conference on Computational Intelligence and Communication Networks (CICN), 45-48, IEEE, November 2012.

9. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandöken, "Novel stacked μ-negative material-loaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 229-235, 2016.
doi:10.1017/S175907871400138X

10. Saraswat, R. K. and M. Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research B, Vol. 65, 65-80, 2016.
doi:10.2528/PIERB15112703

11. Sharma, S. K., M. A. Abdalla, and Z. Hu, "Miniaturisation of an electrically small metamaterial inspired antenna using additional conducting layer," IET Microwaves, Antennas & Propagation, Vol. 12, No. 8, 1444-1449, 2018.
doi:10.1049/iet-map.2017.0927

12. El Badawe, M., T. S. Almoneef, and O. M. Ramahi, "A true metasurface antenna," Scientific Reports, Vol. 6, 19268, 2016.
doi:10.1038/srep19268

13. Zhai, G., Z. N. Chen, and X. Qing, "Enhanced isolation of a closely spaced four-element MIMO antenna system using metamaterial mushroom," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3362-3370, 2015.
doi:10.1109/TAP.2015.2434403

14. Rezvani, M. and Y. Zehforoosh, "A dual-band multiple-input multiple-output microstrip antenna with metamaterial structure for LTE and WLAN applications," AEU - International Journal of Electronics and Communications, Vol. 93, 277-282, 2018.
doi:10.1016/j.aeue.2018.06.034

15. Singh, D. and V. M. Srivastava, "An analysis of RCS for dual-band slotted patch antenna with a thin dielectric using shorted stubs metamaterial absorber," AEU - International Journal of Electronics and Communications, Vol. 90, 53-62, 2018.
doi:10.1016/j.aeue.2018.03.039

16. Gupta, N., J. Saxena, K. S. Bhatia, and N. Dadwal, "Design of metamaterial-loaded rectangular patch antenna for satellite communication applications," Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 1-11, 2018.

17. Jia, D., Y. He, N. Ding, J. Zhou, B. Du, and W. Zhang, "Beam-steering flat lens antenna based on multilayer gradient index metamaterials," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1510-1514, 2018.
doi:10.1109/LAWP.2018.2851442

18. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index material-inspired 90-deg electrically tilted ultra wideband resonator," Optical Engineering, Vol. 53, No. 10, 107104, 2014.
doi:10.1117/1.OE.53.10.107104

19. Rajeshkumar, V. and S. Raghavan, "A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications," AEU - International Journal of Electronics and Communications, Vol. 69, No. 1, 274-280, 2015.
doi:10.1016/j.aeue.2014.09.012

20. Cao, W., B. Zhang, A. Liu, T. Yu, D. Guo, and K. Pan, "A reconfigurable microstrip antenna with radiation pattern selectivity and polarization diversity," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 453-456, 2012.

21. Johnson, M. C., S. L. Brunton, N. B. Kundtz, and J. N. Kutz, "Sidelobe canceling for reconfigurable holographic metamaterial antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1881-1886, 2015.
doi:10.1109/TAP.2015.2399937

22. Pandey, G. K., H. S. Singh, P. K. Bharti, and M. K. Meshram, "Metamaterial-based UWB antenna," Electronics Letters, Vol. 50, No. 18, 1266-1268, 2014.
doi:10.1049/el.2014.2366

23. Zhang, H. T., G. Q. Luo, B. Yuan, and X. H. Zhang, "A novel ultra-wideband metamaterial antenna using chessboard-shaped patch," Microwave and Optical Technology Letters, Vol. 58, No. 12, 3008-3012, 2016.
doi:10.1002/mop.30200

24. Liu, Z. G. and Y. X. Guo, "Compact low-profile dual band metamaterial antenna for body centric communications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 863-866, 2015.
doi:10.1109/LAWP.2014.2382586

25. Taghadosi, M., L. Albasha, N. Qaddoumi, and M. Ali, "Miniaturised printed elliptical nested fractal multiband antenna for energy harvesting applications," IET Microwaves, Antennas & Propagation, Vol. 9, No. 10, 1045-1053, 2015.
doi:10.1049/iet-map.2014.0744

26. Du, G.-H., X. Tang, and F. Xiao, "Tri-band metamaterial-inspired monopole antenna with modified S-shaped resonator," Progress In Electromagnetics Research Letters, Vol. 23, 39-48, 2011.
doi:10.2528/PIERL11031515

27. Wang, Y. D., J. H. Lu, and H. M. Hsiao, "Novel design of semi-circular slot antenna with triple-band operation for WLAN/WIMAX communication," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1531-1534, 2008.
doi:10.1002/mop.23422

28. Amani, N., M. Kamyab, A. Jafargholi, A. Hosseinbeig, and J. S. Meiguni, "Compact tri-band metamaterial-inspired antenna based on CRLH resonant structures," Electronics Letters, Vol. 50, No. 12, 847-848, 2014.
doi:10.1049/el.2014.0875

29. Azaro, R., E. Zeni, P. Rocca, and A. Massa, "Innovative design of a planar fractal-shaped GPS/GSM/Wi-Fi antenna," Microwave and Optical Technology Letters, Vol. 50, No. 3, 825-829, 2008.
doi:10.1002/mop.23208

30. Ali, T. and R. C. Biradar, "A compact multiband antenna using λ/4 rectangular stub loaded with metamaterial for IEEE 802.11 N and IEEE 802.16 E," Microwave and Optical Technology Letters, Vol. 59, No. 5, 1000-1006, 2017.
doi:10.1002/mop.30454

31. Zhao, Q., S.-X. Gong, W. Jiang, B. Yang, and J. Xie, "Compact wide-slot tri-band antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 18, 9-18, 2010.
doi:10.2528/PIERL10081601

32. Wang, Y. F., B. H. Sun, K. He, R. H. Li, and Y. J. Wang, "A compact tri-band antenna for WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 53, No. 10, 2371-2375, 2011.
doi:10.1002/mop.26254

33. Mathew, S., R. Anitha, U. Deepak, C. K. Aanandan, P. Mohanan, and K. Vasudevan, "A compact tri-band dual-polarized corner-truncated sectoral patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5842-5845, 2015.
doi:10.1109/TAP.2015.2479216

34. Hu, W., J. J. Wu, S. F. Zheng, and J. Ren, "Compact ACS-fed printed antenna using dual edge resonators for tri-band operation," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 207-210, 2016.
doi:10.1109/LAWP.2015.2480799

35. Pei, J., A. G. Wang, S. Gao, and W. Leng, "Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 298-301, 2011.


© Copyright 2010 EMW Publishing. All Rights Reserved