PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 79 > pp. 81-90

SHIP DETECTION IN SAR IMAGE BASED ON INFORMATION GEOMETRY METHOD

By X. Yang, M. Yang, Y. Zhang, and G. Zhang

Full Article PDF (296 KB)

Abstract:
Aiming at the problem of high false alarm rate with respect to adaptive threshold in the ship detection from synthetic aperture radar (SAR) images, a novel strategy increasing robustness when using local adaptive threshold is proposed. In this article, we establish a fusion detection model based on a combination of the information geometry and surface geometry. Information geometry from a metric viewpoint can increase the contrast between targets and clutter in SAR image. Local surface feature gives a brief application of adaptive threshold method in ship detection from SAR images by means of the constant false-alarm-rate. Experiments indicate that the proposed geometry-based approach can effectively detect ship targets from complex background SAR images by using the method of fusion processing.

Citation:
X. Yang, M. Yang, Y. Zhang, and G. Zhang, "Ship Detection in SAR Image Based on Information Geometry Method," Progress In Electromagnetics Research M, Vol. 79, 81-90, 2019.
doi:10.2528/PIERM19010102

References:
1. Gao, G., S. Gao, J. He, and G. Li, "Ship detection using compact polarimetric SAR based on the notch filter," IEEE Trans. Geosci. Remote Sens., Vol. 56, No. 9, 5380-5393, 2018.
doi:10.1109/TGRS.2018.2815582

2. Jiao, J., Y. Zhang, H. Sun, X. Yang, X. Gao, W. Hong, K. Fu, and X. Sun, "A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection," IEEE Access, Vol. 6, 20881-20892, 2018.
doi:10.1109/ACCESS.2018.2825376

3. Li, T., Z. Liu, L. Ran, and R. Xie, "Target detection by exploiting superpixel-level statistical dissimilarity for SAR imagery," IEEE Geosci. Remote Sens. Lett., Vol. 15, No. 4, 562-566, 2018.
doi:10.1109/LGRS.2018.2805714

4. Li, T., Z. Liu, R. Xie, and L. Ran, "An improved superpixel-level CFAR detection method for ship targets in high-resolution SAR images," IEEE J. Sel. Topics Appl. Earth Observ., Vol. 11, No. 1, 184-194, 2018.
doi:10.1109/JSTARS.2017.2764506

5. Odysseas, P., A. Alin, and B. David, "Superpixel-level CFAR detectors for ship detection in SAR imagery," IEEE Geosci. Remote Sens. Lett., Vol. 15, No. 9, 1397-1401, 2018.
doi:10.1109/LGRS.2018.2838263

6. Ai, J., X. Yang, J. Song, Z. Dong, L. Jia, and F. Zhou, "An adaptively truncated clutter-statistics-based two-parameter CFAR detector in SAR imagery," IEEE J. Oceanic Eng., Vol. 43, No. 1, 267-279, 2018.
doi:10.1109/JOE.2017.2768198

7. Amari, S., Information Geometry and Its Application, Springer, Tokyo, 2016.
doi:10.1007/978-4-431-55978-8

8. Nielsen, F. and R. Bhatia, Matrix Information Geometry, Springer-Verlag, Heidelberg, 2013.
doi:10.1007/978-3-642-30232-9

9. Forbes, C., M. Evans, N. Hastings, and B. Peacock, Statistical Distributions, Wiley, New York, 2010.
doi:10.1002/9780470627242

10. Arwini, K. A. and C. T. J. Dodson, Information Geometry - Near Randomness and Near Independence, Springer-Verlag, Heidelberg, 2008.

11. Xue, J.-H. and D. M. Titterington, "T-tests, F-tests and Otsu’s methods for image thresholding," IEEE Trans. Image Process., Vol. 20, No. 8, 2392-2396, 2011.
doi:10.1109/TIP.2011.2114358

12. Fabbrini, L., M. Greco, M. Messina, and G. Pinelli, "Improved edge enhancing diffusion filter for speckle-corrupted images," IEEE Geosci. Remote Sens. Lett., Vol. 11, No. 1, 119-123, 2014.
doi:10.1109/LGRS.2013.2247377


© Copyright 2010 EMW Publishing. All Rights Reserved