Vol. 81
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-05-06
A Novel Method for ISAR Imaging of Multiple Maneuvering Targets
By
Progress In Electromagnetics Research M, Vol. 81, 43-54, 2019
Abstract
For inverse synthetic aperture radar (ISAR) imaging of multiple targets, range profiles of different targets are sometimes coupled together, resulting in the ineffectiveness of traditional imaging method, while the couplings in range domain may behave differently in time-frequency domain, and the Doppler histories of different targets are potentially separable. Then the time-frequency analysis method can be utilized for signal separation of multiple targets. Notice that the nonuniform motions of targets may make the time-frequency curves changeful, and accordingly, some preprocessing are needed. In this paper, a novel ISAR imaging method based on modified keystone transform (MKT), short-time Fourier transform (STFT), and Hough transform (HT) is proposed. The radar echoes of multiple targets are approximated to a second-order polynomial. The MKT is firstly utilized to correct the range curvatures. Secondly, the signal in each range cell is transformed into time-frequency domain through the STFT. Meanwhile, HT theory and mask matrix are adopted in time-frequency curves' separation of different targets. Thirdly, after inverse STFT, the separated time-frequency curves are respectively back to the range domain, and the range profiles of different targets are successfully separated. Eventually, with further motion compensation and precise imaging, focused ISAR images of different targets are achieved. Simulation results demonstrate the validity of the proposed method.
Citation
Jia Zhao, Yun-Qi Zhang, Xin Wang, Sheng Wang, and Feng Shang, "A Novel Method for ISAR Imaging of Multiple Maneuvering Targets," Progress In Electromagnetics Research M, Vol. 81, 43-54, 2019.
doi:10.2528/PIERM19012302
References

1. Zheng, J. B., T. Su, W. T. Zhu, and Q. H. Liu, "ISAR imaging of targets with complex motions based on the Keystone time-chirp rate distribution," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 7, 1275-1279, 2014.
doi:10.1109/LGRS.2013.2291992

2. Lv, Q., T. Su, and J. Zheng, "Inverse synthetic aperture radar imaging of targets with complex motion based on the local polynomial ambiguity function," Journal of Applied Remote Sensing, Vol. 10, No. 1, 015019, 2016.
doi:10.1117/1.JRS.10.015019

3. Sun, S. B. and G. Liang, "ISAR imaging of complex motion targets based on Radon transform cubic chirplet decomposition," International Journal of Remote Sensing, Vol. 39, No. 6, 1770-1781, 2018.
doi:10.1080/01431161.2017.1415485

4. Li, Y. C., M. D. Xing, J. H. Su, Y. H. Quan, and Z. Bao, "A new algorithm of ISAR imaging for maneuvering targets with low SNR," IEEE Transactions on Aerospace & Electronic Systems, Vol. 49, No. 1, 543-557, 2013.
doi:10.1109/TAES.2013.6404119

5. Qian, J., X. Lv, M. Xing, L. Li, and Z. Bao, "Motion parameter estimation of multiple ground fast-moving targets with a three-channel synthetic aperture radar," IET Radar, Sonar & Navigation, Vol. 5, No. 5, 582-592, 2011.
doi:10.1049/iet-rsn.2010.0111

6. Lian, M. and Y. Jiang, "Time-frequency analysis for moving ship targets in GEO spaceborne/airborne bistatic SAR imaging based on a GEO satellite transmitter," International Journal of Remote Sensing, Vol. 38, No. 23, 7389-7404, 2017.
doi:10.1080/01431161.2017.1375615

7. Li, J., R. Wu, and V. C. Chen, "Robust autofocus algorithm for ISAR imaging of moving targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 3, 1056-1069, 2001.
doi:10.1109/7.953256

8. Muñoz-Ferreras, J. M., F. Pérez-Martínez, and M. Datcu, "Generalisation of inverse synthetic aperture radar autofocusing methods based on the minimisation of the Renyi entropy," IET Radar Sonar & Navigation, Vol. 4, No. 4, 586-594, 2010.
doi:10.1049/iet-rsn.2009.0027

9. Tian, J., W. Cui, X. L. Lv, and S. Wu, "Joint estimation algorithm for multi-targets’ motion parameters," IET Radar Sonar & Navigation, Vol. 8, No. 8, 939-945, 2014.
doi:10.1049/iet-rsn.2013.0346

10. Li, Y., Y. Fu, X. Li, and L.-W. Li, "ISAR imaging of multiple targets using particle imaging of multiple targets using particle swarm optimisation-adaptive joint time frequency approach," IET Signal Processing, Vol. 4, No. 4, 343-351, 2010.
doi:10.1049/iet-spr.2009.0046

11. Tian, J., W. Cui, and S. Wu, "A novel method for parameter estimation of space moving targets," IEEE Geoscience & Remote Sensing Letters, Vol. 11, No. 2, 389-393, 2013.
doi:10.1109/LGRS.2013.2263332

12. Li, X., G. Cui, W. Yi, and L. Kong, "A fast maneuvering target motion parameters estimation algorithm based on ACCF," IEEE Signal Processing Letters, Vol. 22, No. 3, 270-274, 2014.
doi:10.1109/LSP.2014.2358230

13. Park, S. H., H. T. Kim, and K. T. Kim, "Segmentation of ISAR images of targets moving in formation," IEEE Transactions on Geoscience & Remote Sensing, Vol. 48, No. 4, 2099-2108, 2010.
doi:10.1109/TGRS.2009.2033266

14. Bai, X. R., F. Zhou, M. D. Xing, and Z. Bao, "A novel method for imaging of group targets moving in a formation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 1, 221-231, 2012.
doi:10.1109/TGRS.2011.2160185

15. Martorella, M., E. Giusti, F. Berizzi, A. Bacc, and E. Dalle Mese, "ISAR based techniques for refocusing non-cooperative targets in SAR images," IET Radar Sonar & Navigation, Vol. 6, No. 5, 332-340, 2012.
doi:10.1049/iet-rsn.2011.0310

16. Park, S. H., K. K. Park, J. H. Jung, H. T. Kim, and K. T. Kim, "ISAR imaging of multiple targets using edge detection and hough transform," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 365-373, 2008.
doi:10.1163/156939308784160622

17. Choi, G. G., S. H. Park, H. T. Kim, and K. T. Kim, "ISAR imaging of multiple targets based on particle swarm optimization and hough transform," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1825-1834, 2009.
doi:10.1163/156939309789932322

18. Xing, M. D., R. B. Wu, J. Q. Lan, and Z. Bao, "Migration through resolution cell compensation in ISAR imaging," IEEE Geoscience & Remote Sensing Letters, Vol. 1, No. 2, 141-144, 2004.
doi:10.1109/LGRS.2004.824766

19. Lv, X. L., M. D. Xing, S. H. Zhang, and Z. Bao, "Keystone transformation of the Wigner-Ville distribution for analysis of multicomponent LFM signals," Signal Processing, Vol. 89, No. 5, 791-806, 2009.
doi:10.1016/j.sigpro.2008.10.029

20. Kirkland, D., "Imaging moving targets using the second-order keystone transform," IET Radar Sonar & Navigation, Vol. 5, No. 8, 902-910, 2011.
doi:10.1049/iet-rsn.2010.0304

21. Zhang, J., T. Su, Y. Li, and J. Zheng, "Radar high-speed maneuvering target detection based on joint second-order keystone transform and modified integrated cubic phase function," Journal of Applied Remote Sensing, Vol. 10, No. 3, 035009, 2016.
doi:10.1117/1.JRS.10.035009

22. Ruan, H., Y. Wu, X. Jia, and W. Ye, "Novel ISAR imaging algorithm for maneuvering targets based on a modified Keystone transform," IEEE Geoscience & Remote Sensing Letters, Vol. 11, No. 1, 128-132, 2013.
doi:10.1109/LGRS.2013.2250250

23. Lin, Q. Q., Z. P. Chen, Y. Zhang, and J. Z. Lin, "Coherent phase compensation method based on direct if sampling in wideband radar," Progress In Electromagnetics Research, Vol. 136, 753-764, 2013.
doi:10.2528/PIER12122203

24. Zhu, D. Y., Y. Li, and Z. D. Zhu, "A Keystone transform without interpolation for SAR ground moving-target imaging," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 1, 18-22, 2007.
doi:10.1109/LGRS.2006.882147

25. Zhang, L. and X. H. He, "Approach for airborne radar ISAR imaging of ship target," IEEE International Conference on Signal Processing, 2137-2141, 2010.

26. Wang, J., J. Wang, Y. Wu, Y. Zhu, Z. Luo, and Y. Deng, "Phase adjustment for multistatic passive radar imaging based on image entropy and image contrast," International Journal of Remote Sensing, Vol. 37, No. 18, 4460-4485, 2016.
doi:10.1080/01431161.2016.1213919