Vol. 89
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-26
Impedance Synthesis of Plane Diffraction Vibrator Arrays
By
Progress In Electromagnetics Research M, Vol. 89, 31-41, 2020
Abstract
The problem of impedance synthesis of two-dimensional diffraction arrays of thin linear vibrators, whose geometric centers are located at the nodes of a flat rectangular grid with double periodicity is solved analytically. The problem is formulated as follows: the complex surface impedances of the vibrators should be determined which allows to steer the diffraction radiation maximum of the array to any predefined direction. The problem is solved under following assumptions: array is excited by a polarized plane wave, and the radiation pattern (RP) of each vibrator element in the array coincides with that of an isolated radiator. The correctness of the solution is verified by simulations using the formulas for the vibrator impedances for the 5 by 5 antenna array.
Citation
Yuriy M. Penkin, Viktor A. Katrich, Mikhail Nesterenko, Sergey L. Berdnik, and Svetlana V. Pshenichnaya, "Impedance Synthesis of Plane Diffraction Vibrator Arrays," Progress In Electromagnetics Research M, Vol. 89, 31-41, 2020.
doi:10.2528/PIERM19080905
References

1. Bakhrakh, L. D. and S. D. Kremenetskiy, Synthesis of Radiating Systems (Theory and Methods of Design), Sov. Radio, Moscow, 1974 (in Russian).

2. Microwave Devices and Antennas.Designing Phased Antenna Arrays, Tutorial/edited by Voskresensky, D. I., Radiotekhnika, Moscow, 2003 (in Russian).

3. Vendik, O. G. and M. D. Parnes, Antennas with Electric Scanning (Introduction into the Theory), Sov. Radio, Moscow, 2001 (in Russian).

4. Berdnik, S. V., V. A. Katrich, M. V. Nesterenko, and Y. M. Penkin, "Electromagnetic waves radiation by a vibrators system with variable surface impedance," Progress In Electromagnetics Research M, Vol. 51, 157-163, 2016.
doi:10.2528/PIERM16091605

5. Nesterenko, M. V., V. A. Katrich, Y. M. Penkin, V. M. Dakhov, and S. L. Berdnik, Thin Impedance Vibrators. Theory and Applications, Springer Science+Business Media, New York, 2011.

6. Penkin, Y. M., V. A. Katrich, and M. V. Nesterenko, "Formation of radiation fields of linear vibrator arrays by using impedance synthesis," Progress In Electromagnetics Research M, Vol. 57, 1-10, 2017.
doi:10.2528/PIERM17031602

7. Eisenberg, G. Z., Shortwave Antennas, Radio i Svyaz’, Moscow, 1985 (in Russian).

8. Amitay, N., V. Galindo, and C. P. Wu, Theory and Analysis of Phased Array Antennas, John Wiley & Sons Inc, New York, 1972.

9. Lee, R. and S. W. Mittra, Analytical Techniques in the Theory of Guided Waves, Macmillan series in electrical science, New York, 1972.

10. Penkin, Y. M., V. A. Katrich, and M. V. Nesterenko, "Impedance synthesis of 2D antenna arrays of slotted spherical radiators," Progress In Electromagnetics Research Letters, Vol. 81, 93-100, 2019.

11. Lagarkov, A. N., V. N. Semenenko, A. A. Basharin, and N. P. Balabukha, "Abnormal radiation pattern of metamaterial waveguide," PIERS Online, Vol. 4, 641-644, 2008.
doi:10.2529/PIERS071220103345