Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 87 > pp. 127-136


By N. L. Nguyen

Full Article PDF (1,103 KB)

This paper investigates a low-profile Multiple Input Multiple Output (MIMO) antenna with enhanced gain based on Defected Ground Structure (DGS). The proposed antenna consists of two sets of four elements (2 x 2), and it is yielded at the central frequency of 5.5 GHz for Wireless Local Area Network (WLAN) applications. Being on RT5880 with height of 1.575 mm, the overall dimensions of MIMO antenna and single array are 145 x 88 x 1.575 mm3 and 75 x 82 x 1.575 mm3, respectively. To get high gain and low mutual coupling for antenna, a Defected Ground Structure (DGS) is proposed and integrated on ground plane. At 5.3 GHz, the gain of antenna achieves approximately 9.5 dBi while mutual coupling level is under -20 dB. Besides, the MIMO antenna witnesses a radiation efficiency of 93%. The measurement results are compared to simulation ones to verify the performance of the proposed antenna.

N. L. Nguyen, "Gain Enhancement in MIMO Antennas Using Defected Ground Structure," Progress In Electromagnetics Research M, Vol. 87, 127-136, 2019.

1. Alam, S., M. T. Islam, and H. Arshad, "Gain enhancement of a multiband resonator using defected ground surface on epoxy woven glass material," The Scientific World Journal, 2014.

2. Rajawat, A., P. K. Singhal, S. H. Gupta, and C. Jain, "Gain enhancement of microstrip patch antenna using H-shaped defected ground structure," Progress in Intelligent Computing Techniques: Theory, Practice, and Applications, 2018.

3. Zheng, Y., et al., "Metamaterial-based patch antenna with wideband RCS reduction and gain enhancement using improved loading method," IET Microwaves, Antennas & Propagation, Vol. 11, No. 9, 1183-1189, 2017.

4. Saravanan, M., V. B. Geo, and S. M. Umarani, "Gain enhancement of patch antenna integrated with metamaterial inspired superstrate," Journal of Electrical Systems and Information Technology, 2-9, 2018.

5. Kim, J. H., C. H. Ahn, and J. K. Bang, "Antenna gain enhancement using a holey superstrate," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 3, 1164-1167, 2016.

6. Cao, W., B. Zhang, A. Liu, T. Yu, D. Guo, and Y. Wei, "Gain enhancement for broadband periodic endfire antenna by using split-ring resonator structures," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 7, 3513-3516, 2012.

7. Liu, Z., P. Wang, and Z. Zeng, "Enhancement of the gain for microstrip antennas using negative permeability metamaterial on low temperature co-fired ceramic (LTCC) substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 429-432, 2013.

8. Roy, S. and U. Chakraborty, "Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials," IET Communications, Vol. 12, No. 12, 1448-1453, 2018.

9. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: fundamentals, analysis, and applications in modern wireless trends," International Journal of Antennas and Propagation, 1-22, 2017.

10. Dgs, G. S., "Investigation of novel tapered hybrid defected ground structure (DGS)," International Journal RF and Microwave Computer-Aided Engineering, 544-550, 2005.

11. Paulraj, A. J., D. A. Gore, R. U. Nabar, and H. Bolcskei, "An overview of MIMO communications — A key to gigabit wireless," Proceedings of the IEEE, Vol. 92, No. 2, 198-217, 2004.

12. Pandit, S., A. Mohan, and P. Ray, "A compact four-element MIMO antenna for WLAN applications," Microwave and Optical Technology Letters, Vol. 60, No. 2, 289-295, 2018.

13. Sharawi, M. S., et al., "A CSRR loaded MIMO antenna system for ISM band operation," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 8, 4265-4274, 2013.

14. Yang, L., S. Yan, and T. Li, "Compact printed four-element MIMO antenna system for LTE/ISM operations," Progress In Electromagnetics Research Letters, Vol. 54, 47-53, 2015.

15. Anitha, R., P. V. Vinesh, K. C. Prakash, P. Mohanan, K. Vasudevan, and S. Member, "A compact quad element slotted ground wideband antenna for MIMO applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 10, 4550-4553, 2016.

16., "Gaussian beam,", Online Available: https://en.wikipedia.org/wiki/Gaussian beam.

17. Bhuiyan, M. D. S. and N. C. Karmakar, "Defected ground structures for microwave applications," Wiley Encyclopedia of Electrical and Electronics Engineering, 1-31, 2014.

18. Balanis, C. A., Antenna theory: Analysis and Design, 4th Edition, JohnWiley & Sons, Inc, Canada, 2016.

19. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705, 2003.

20. Han, W., X. Zhou, J. Ouyang, Y. Li, R. Long, and F. Yang, "A six-port MIMO antenna system with high isolation for 5GHz WLAN access points," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 880-883, 2014.

21. Malviya, L., R. K. Panigrahi, and M. V. Kartikeyan, "Circularly polarized 2 × 2 MIMO antenna for WLAN applications," Progress In Electromagnetics Research C, Vol. 66, 97-107, 2016.

22. Costa, J. R., E. B. Lima, C. R. Medeiros, and C. A. Fernandes, "Evaluation of a new wideband slot array for MIMO performance enhancement in indoor WLANs," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, 1200-1206, 2011.

23. Malviya, L. D., R. K. Panigrahi, and M. V. Kartikeyan, "A 2 × 2 dual-band MIMO antenna with polarization diversity for wireless applications," Progress In Electromagnetics Research C, Vol. 61, 91-103, 2016.

© Copyright 2010 EMW Publishing. All Rights Reserved