Vol. 87
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-12-06
Joint Trajectories and Power Allocation Design for Dual UAV-Enabled Secrecy SWIPT Networks
By
Progress In Electromagnetics Research M, Vol. 87, 73-82, 2019
Abstract
In this paper, a dual unmanned aerial vehicle (UAV)-enabled secure communication system with simultaneous wireless and information and power transfer (SWIPT) has been investigated. Specifically, assuming that the energy receivers (ERs) may be potential eavesdroppers (Eves), we aim to maximize the minimum secrecy rate among multiply legitimate receivers (LRs) within each period by jointly adjusting the UAVs' trajectories and power control (PC). Since the resulting optimization problem is very difficult to solve due to highly non-convex objective and constraints, we equivalently transform it into a more tractable problem via successive convex approximation (SCA) and constrained concave-convex procedure (CCCP), then propose an iterative method. The simulation results show that the proposed joint optimization algorithm achieves significantly better performance than the conventional algorithms.
Citation
Feng Zhou, Rugang Wang, and Jinhong Bian, "Joint Trajectories and Power Allocation Design for Dual UAV-Enabled Secrecy SWIPT Networks," Progress In Electromagnetics Research M, Vol. 87, 73-82, 2019.
doi:10.2528/PIERM19092802
References

1. Kawamoto, Y., H. Nishiyama, N. Kato, F. Ono, and R. Miura, "Toward future unmanned aerial vehicle networks: Architecture, resource allocation and field experiments," IEEE Wireless Commun., Vol. 26, No. 1, 94-99, Feb. 2019.
doi:10.1109/MWC.2018.1700368

2. Li, B., Z. Fei, and Y. Zhang, "UAV communications for 5G and beyond: Recent advances and future trends," IEEE Inter. Things Jour., Vol. 6, No. 2, 2241-2263, Apr. 2019.
doi:10.1109/JIOT.2018.2887086

3. He, D., S. Chan, and M. Guizani, "Communication security of unmanned aerial vehicles," IEEE Wireless Commun., Vol. 24, No. 4, 134-139, Aug. 2017.
doi:10.1109/MWC.2016.1600073WC

4. Tang, H., Q. Wu, and B. Li, "An efficient solution for joint power and trajectory optimization in UAV-enabled wireless network," IEEE Access, Vol. 7, 59640-59625, Mar. 2019.
doi:10.1109/ACCESS.2019.2915660

5. Zhang, G., Q. Wu, M. Cui, and R. Zhang, "Securing UAV communications via joint trajectory and power control," IEEE Trans. Wireless Commun., Vol. 18, No. 2, 1376-1389, Feb. 2019.
doi:10.1109/TWC.2019.2892461

6. Cui, M., G. Zhang, Q. Wu, and D. W. K. Ng, "Robust trajectory and transmit power design for secure UAV communications," IEEE Trans. Veh. Tech., Vol. 67, No. 9, 9042-9046, Sep. 2018.
doi:10.1109/TVT.2018.2849644

7. Zhou, X., Q.Wu, S. Yan, F. Shu, and J. Li, "UAV-enabled secure communications: Joint trajectory and transmit power optimization," IEEE Trans. Veh. Tech., Vol. 68, No. 4, 4069-4073, Apr. 2019.
doi:10.1109/TVT.2019.2900157

8. Gao, Y., H. Tang, B. Li, and X. Yuan, "Joint trajectory and power design for UAV-enabled secure communications with no-fly zone constraints," IEEE Access, Vol. 7, 44459-44470, Apr. 2019.
doi:10.1109/ACCESS.2019.2908407

9. Cai, Y., F. Cui, Q. Shi, M. Zhao, and G. Y. Li, "Dual-UAV-enabled secure communications: Joint trajectory design and user scheduling," IEEE J. Sel. A. Commun., Vol. 36, No. 9, 1972-1985, Sep. 2018.
doi:10.1109/JSAC.2018.2864424

10. Lee, H., S. Eom, J. Park, and I. Lee, "UAV-aided secure communications with cooperative jamming," IEEE Trans. Veh. Tech., Vol. 67, No. 10, 9385-9392, Oct. 2018.
doi:10.1109/TVT.2018.2853723

11. Zhong, C., J. Yao, and J. Xu, "Secure UAV communication with cooperative jamming and trajectory control," IEEE Commun. Lett., Vol. 23, No. 2, 286-289, Feb. 2019.
doi:10.1109/LCOMM.2018.2889062

12. Li, A., Q. Wu, and R. Zhang, "UAV-enabled cooperative jamming for improving secrecy of ground wiretap channel," IEEE Wireless Commun. Lett., Vol. 8, No. 1, 181-184, Feb. 2019.
doi:10.1109/LWC.2018.2865774

13. Perera, T., D. Jayakody, S. Sharma, S. Chatzinotas, and J. Li, "Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges," IEEE Commun. Surv. Tut., Vol. 20, No. 1, 264-302, Quart. 1st, 2018.
doi:10.1109/COMST.2017.2783901

14. Hong, X., P. Liu, F. Zhou, S. Guo, and Z. Chu, "Resource allocation for secure UAV-assisted SWIPT systems," IEEE Access, Vol. 7, 24248-24257, Feb. 2019.
doi:10.1109/ACCESS.2019.2897226

15. Huang, F., J. Chen, H. Wang, G. Ding, Z. Xue, Y. Yang, and F. Song, "UAV-assisted SWIPT in internet of things with power splitting: Trajectory design and power allocation," IEEE Access, Vol. 7, 68260-68270, Jun. 2019.
doi:10.1109/ACCESS.2019.2918135

16. Boyd, S. and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, Cambridge, UK, 2004.
doi:10.1017/CBO9780511804441

17. Gao, H., T. Lv, W. Wang, and N. C. Beaulieu, "Energy-efficient and secure beamforming for selfsustainable relay-aided multicast networks," IEEE Signal Process. Lett., Vol. 23, No. 11, 1509-1513, Nov. 2016.
doi:10.1109/LSP.2016.2600105

18., Grant, M. and S. Boyd, CVX: Matlab software for disciplined convex programming, version 2.0 beta, Sep. 2012, Available: http://cvxr.com/cvx.