Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 87 > pp. 93-102


By L. Qu and Y. Liu

Full Article PDF (230 KB)

Available of multiple illuminators in a multistatic airborne passive synthetic aperture radar (SAR) system can enhance SAR imaging quality. In this paper, a new imaging algorithm based on two-level block sparsity for a multistatic airborne passive SAR system is proposed. The proposed imaging algorithm named by two-level block matching pursuit (BMP) algorithm utilizes both the spatially clustered property of observed targets and joint sparsity of the multistatic observation, i.e. two-level block sparsity to achieve imaging reconstruction of an observed scene. The simulation results show that the proposed two-level BMP imaging algorithm for the multistatic airborne passive SAR system can reduce imaging reconstruction time and provide enhanced imaging reconstruction quality compared to the state-of-the-art structured sparse imaging algorithm.

L. Qu and Y. Liu, "Multistatic Airborne Passive Synthetic Aperture Radar Imaging Based on Two-Level Block Sparsity," Progress In Electromagnetics Research M, Vol. 87, 93-102, 2019.

1. Yonel, B., E. Mason, and B. Yazıcı, "Deep learning for passive synthetic aperture radar," IEEE J. Sel. Topics Signal Process., Vol. 12, No. 1, 90-103, Feb. 2018.

2. Wan, X., J. Yi, Z. Zhao, and H. Ke, "Experimental research for CMMB-based passive radar under a multipath environment," IEEE Trans. Aerosp. Electron. Syst., Vol. 50, No. 1, 70-85, Jan. 2014.

3. Liu, F., M. Antoniou, Z. Zeng, and M. Cherniakov, "Coherent change detection using passive GNSS-based BSAR: experimental proof of concept," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 8, 4544-4555, Aug. 2013.

4. Pastina, D., et al., "Maritime moving target long time integration for GNSS-based passive bistatic radar," IEEE Trans. Aerosp. Electron. Syst., Vol. 54, No. 6, 3060-3083, Dec. 2018.

5. Tan, D. K. P., M. Lesturgie, H. Sun, and Y. Lu, "Space-time interference analysis and suppression for airborne passive radar using transmissions of opportunity," IET Radar, Sonar and Navigation, Vol. 8, No. 2, 142-152, Feb. 2014.

6. Deng, Y., J. Wang, Z. Luo, and S. Guo, "Cascaded suppression method for airborne passive radar with contaminated reference signal," IEEE Access, Vol. 7, 50317-50329, 2019.

7. Yang, P., X. L. Yu, Z. Chai, D. Zhang, Q. Yue, and J. Yang, "Clutter cancellation along the clutter ridge for airborne passive radar," IEEE Geosci. Remote Sens. Lett., Vol. 14, No. 6, 951-955, Jun. 2017.

8. Berthillot, C., A. Santori, O. Rabaste, D. Poullin, and M. Lesturgie, "BEM reference signal estimation for an airborne passive radar antenna array," IEEE Trans. Aerosp. Electron. Syst., Vol. 53, No. 6, 2833-2845, Dec. 2017.

9. Wang, L., C. E. Yarman, and B. Yazici, "Doppler-Hitchhiker: A novel passive synthetic aperture radar using ultranarrowband sources of opportunity," IEEE Trans. Geosci. Remote Sens., Vol. 49, No. 10, 3521-3537, Oct. 2011.

10. Dawidowicz, B., K. S. Kulpa, M. Malanowski, J. Misiurewicz, P. Samczynski, and M. Smolarczyk, "DPCA detection of moving targets in airborne passive radar," IEEE Trans. Aerosp. Electron. Syst., Vol. 48, No. 2, 1347-1357, Apr. 2012.

11. Gromek, D., K. Kulpa, and P. Samczynski, "Experimental results of passive SAR imaging using DVB-T illuminators of opportunity," IEEE Geosci. Remote Sens. Lett., Vol. 13, No. 8, 1124-1128, Aug. 2016.

12. Gromek, D., K. Radecki, J. Drozdowicz, P. Samczynski, and J. Szabatin, "Passive SAR imaging using DVB-T illumination for airborne applications," IET Radar, Sonar and Navigation, Vol. 13, No. 2, 213-221, Feb. 2019.

13. Liu, C. C. and W. D. Chen, "Sparse self-calibration imaging via iterative MAP in FM-based distributed passive radar," IEEE Geosci. Remote Sens. Lett., Vol. 10, No. 3, 538-542, Oct. 2013.

14. Qiu, W., et al., "Compressive sensing-based algorithm for passive bistatic ISAR with DVB-T signals," IEEE Trans. Aerosp. Electron. Syst., Vol. 51, No. 3, 2166-2180, Jul. 2015.

15. Yu, X. F., T. Y. Wang, X. F. Lu, C. Chen, and W. D. Chen, "Sparse passive radar imaging based on DVB-S using the Laplace-SLIM algorithm," 2014 International Radar Conference, 1-4, Lille, 2014.

16. Zhang, Y. D., M. G. Amin, and B. Himed, "Structure-aware sparse reconstruction and applications to passive multistatic radar," IEEE Aerosp. Electron. Syst. Mag., Vol. 32, No. 2, 68-78, Feb. 2017.

17. Wu, Q., Y. D. Zhang, M. G. Amin, and B. Himed, "High-resolution passive SAR imaging exploiting structured Bayesian compressive sensing," IEEE J. Sel. Topics Signal Process., Vol. 9, No. 8, 1484-1497, Dec. 2015.

18. Wang, X., G. Li, Y. Liu, and M. G. Amin, "Two-level block matching pursuit for polarimetric through-wall radar imaging," IEEE Trans. Geosci. Remote Sens., Vol. 56, No. 3, 1533-1545, Mar. 2018.

19. Cevher, V., P. Indyk, L. Carin, and R. G. Baraniuk, "Sparse signal recovery and acquisition with graphical models," IEEE Signal Process. Mag., Vol. 27, No. 6, 92-103, Nov. 2010.

20. Cevher, V., M. F. Duarte, C. Hegde, and R. G. Baraniuk, "Sparse signal recovery using Markov random fields," Proc. Adv. Neural. Inf., 257-264, 2009.

21. Tropp, J. A., A. C. Gilbert, and M. J. Strauss, "Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit?," Signal Process., Vol. 86, No. 3, 572-588, Mar. 2006.

22. Koller, D. and N. Friedman, Probabilistic Graphical Models-Principles and Techniques, MIT Press, Cambridge, MA, USA, 2009.

23. Ward, R., "Compressed sensing with cross validation," IEEE Trans. on Inf. Theory, Vol. 55, No. 12, 5773-5782, Dec. 2009.

24. Zhang, J., L. Chen, P. T. Boufounos, and Y. Gu, "On the theoretical analysis of cross validation in compressive sensing," Proceeding of the 2014 IEEE International Conference on Acoustic, Speech, and Signal Processing, ICASSP 2014, 3370-3374, Italy, 2014.

25. Seng, C. H., A. Bouzerdoum, M. G. Amin, and S. L. Phung, "Probabilistic fuzzy image fusion approach for radar through wall sensing," IEEE Trans. Image Process., Vol. 22, No. 12, 4938-4951, Dec. 2013.

© Copyright 2010 EMW Publishing. All Rights Reserved