Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 92 > pp. 79-88


By I. K. Kurkan, A. I. Klimov, P. V. Priputnev, and V. V. Rostov

Full Article PDF (400 KB)

The novel design of an ultra-wideband calorimeter for energy measurement of high power microwave pulses of nanosecond duration is proposed in this paper. The main idea is the use of a circular waveguide with losses in the wall and metal cone insertion at the axis to increase attenuation constant in the waveguide. The efficiency of the concept was proved with the numeric simulation and optimization of the calorimeter design with ANSYS HFSS software for frequencies from 8 to 38 GHz. The operating modes are supposed to be symmetric TM0n ones. Ethanol was chosen as an absorbing medium. It is parted from the vacuum volume by a plastic tube. The frequency dependencies of ethanol's relative permittivity and loss tangent were taken into account in the simulation model. The reflection coefficient for TM01 mode is below -20 dB at the lowest frequency of 8 GHz and well below the level of -25 dB from 10 to 38 GHz. The reflection coefficients for higher order modes remain below -30 dB until the operating frequency is close to the cut-off frequency for a particular mode. The maximum accepted power level is of hundreds of megawatts for pulses of a nanoseconds duration. The effect of waveguide modes mixture at the input of the calorimeter on the maximum accepted power level was considered. This level may differ by 4 times between specific modes mixtures. Therefore, the transition from a particular microwave source to the calorimeter input should be carefully optimized.

I. K. Kurkan, A. I. Klimov, P. V. Priputnev, and V. V. Rostov, "Numerical Simulation of Wideband Calorimeter for High Power Microwave," Progress In Electromagnetics Research M, Vol. 92, 79-88, 2020.

1. Benford, J., J. A. Swegle, and E. Shamiloglu, High Power Microwaves, Taylor & Francis, Oxford, 2007.

2. Huttlin, G. A., et al., "The reflex-diode HPM source on Aurora," IEEE Trans. Plasma Sci., Vol. 18, No. 3, 618-625, 1990.

3. Bugaev, S. P., et al., "Relativistic multiwave cerenkov generators," IEEE Trans. Plasma Sci., Vol. 18, No. 3, 525-536, 1990.

4. Efthimion, P., P. R. Smith, and S. P. Schlesinger, "Broad spectral electromagnetic radiation calorimeter: Centimeters to microns," Rev. Sci. Instrum., Vol. 47, No. 9, 1059-1062, 1976.

5. Warton, C. B., L. M. Earley, and W. P. Ballard, "Calorimetric measurements of single-pulse high-power microwaves in oversized waveguides," Rev. Sci. Instrum., Vol. 57, No. 5, 855-858, 1986.

6. Earley, L. M., W. P. Ballard, and L. D. Roose, "Rectangular waveguide calorimeter for single intense microwave pulses," Rev. Sci. Instrum., Vol. 57, No. 9, 2359-2361, 1986.

7. Earley, L. M., et al., "Comprehensive approach for diagnosing intense single-pulse microwave sources," Rev. Sci. Instrum., Vol. 57, No. 9, 2283-2293, 1986.

8. Zaitsev, N. I., et al., "A calorimeter for measuring the energy of a high-power electromagnetic pulse," Instrum. Exp. Tech., Vol. 35, No. 2, 283-284, 1992.

9. Belousov, V. I., et al., "Calorimeter for measuring the total energy of high-power pulse millimeter-range devices," Instrum. Exp. Tech., Vol. 39, No. 3, 402-405, 1996.

10. Belousov, V. I., et al., "A dry overmoded-waveguide calorimeter for measurement of high-power microwave pulse energy," Instrum. Exp. Tech., Vol. 35, No. 3, 482-487, 1992.

11. Bykov, N. M., et al., "Diagnosis of high-power nanosecond pulses of microwave-radiation," Instrum. Exp. Tech., Vol. 30, No. 6(2), 1393-1397, 1987.

12. Klimov, A. I., et al., "A calorimeter for high power microwave pulse measurement," Proceedings of 15th International Symposium on High Current Electronics, 422-424, Tomsk, Russia, 2008.

13. Lisichkin, A. L. and E. V. Nesterov, "Waveguide calorimeter for pulsed microwave radiation in the centimeter wavelength range," Instrum. Exp. Tech., Vol. 41, No. 3, 362-364, 1998.

14. Kiselev, V. A., et al., "A calorimeter with a capacitive probe for measuring microwave energy," Instrum. Exp. Tech., Vol. 48, No. 2, 230-233, 2005.

15. Lisichkin, A. L., E. V. Nesterov, and V. A. Stroganov, "Calorimeter for pulsed microwave radiation," Instrum. Exp. Tech., Vol. 39, No. 1, 70-72, 1996.

16. Shkvarunets, A. G., "A broadband microwave calorimeter of large cross section," Instrum. Exp. Tech., Vol. 39, No. 4, 535-538, 1996.

17. Lisichkin, A. L., et al., "A liquid pulsed microwave radiation calorimeter," Instrum. Exp. Tech., Vol. 50, No. 1, 82-85, 2007.

18. Klimov, A. I., et al., "Measurement of parameters of X-band high-power microwave super radiative pulses," IEEE Trans. Plasma Sci., Vol. 36, No. 3, 661-664, 2008.

19. Vykhodtsev, P. V., et al., "Liquid calorimeters for measuring the energy of high-power microwave pulses," Instrum. Exp. Tech., Vol. 58, No. 4, 510-514, 2015.

20. Teng, Y., et al., "High-efficiency coaxial relativistic backward wave oscillator," Rev. Sci. Instrum., Vol. 82, No. 2, 024701, 2011.

21. Ye, H., et al., "Research on calorimeter for high-power microwave measurements," Rev. Sci. Instrum., Vol. 86, No. 12, 124706, 2015.

22. Klimov, A. I. and V. Yu. Kozhevnikov, "Numerical optimization of aperture absorbing loads of liquid calorimeters for high-power microwave pulses," Rus. Phys. Journ., Vol. 60, No. 8, 1319-1324, 2017.

23. Dagys, M., et al., "The resistive sensor: A device for high-power microwave pulsed measurements," IEEE Antennas and Propagation Magazine, Vol. 43, No. 5, 64-79, 2001.

24. Ballard, W. P. and L. M. Earley, "Microwave detecting diode rise-time measurements," Rev. Sci. Instrum., Vol. 56, No. 7, 1470-1472, 1985.

25. Lobaev, M. A., et al., "Effect of inhomogeneous microwave field on the threshold of multipactor discharge on a dielectric," Tech. Phys. Lett., Vol. 35, No. 12, 1074-1077, 2009.

26. Chang, C., et al., "The effect of grooved surface on dielectric multipactor," J. Appl. Phys., Vol. 105, No. 12, 123305, 2009.

27. Klimov, A. I. and E. M. Totmeninov, "Diffraction effects in measurements of characteristics of high-power microwave pulses with wide aperture liquid calorimeters," Rus. Phys. Journ., Vol. 60, No. 6, 964-971, 2017.

28. Tarakanov, V. P., et al., "Time-dependent numerical simulation of diffraction and absorption effects in diagnostics of short high-power microwave pulses using wide-aperture liquid calorimeters," EPJ Web Conf., Vol. 149, 04046, 2017.

29. ANSYS HFSS 3D Electromagnetic Field Simulator for RF and Wireless Design [online] available at https://www.ansys.com/products/electronics/ansys-hfss,.

30. Schamiloglu, E., et al., "High-power microwave-induced TM/sub01/plasma ring," IEEE Transactions on Plasma Science, Vol. 24, No. 1, 6-7, 1996.

31. Ivanov, O. A., M. A. Lobaev, V. A. Isaev, and A. L. Vikharev, "Experimental study of a multipactor discharge on a dielectrics surface in a high-Q microwave cavity," Plasma Phys. Reports, Vol. 36, No. 4, 336-344, 2010.

32. Lobaev, M. A., et al., "Effect of inhomogeneous microwave field on the threshold of multipactor discharge on a dielectric," Tech. Phys. Lett., Vol. 35, No. 12, 1074-1077, 2009.

33. Krupka, J., "Measurements of the complex permittivity of low loss polymers at frequency range from 5 GHz to 50 GHz," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 6, 464-466, 2016.

34. Bao, J., M. L. Swicord, and C. C. Davis, "Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol," J. Chem. Phys., Vol. 104, No. 12, 4441-4450, 1996.

35. Barthel, J. K. Bachhuber, R. Buchner, and H. Hetzenauer, "Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols," Chem. Phys. Lett., Vol. 165, No. 4, 369-373, 1990.

36. Sato, T. and R. Buchner, "Dielectric relaxation processes in ethanol/water mixtures," J. Phys. Chem. A, Vol. 108, No. 23, 5007-5015, 2004.

37., "Agilent basics of measuring the dielectric properties of materials. Application note," Agilent Technologies, 2013.

38. Cole, K. S. and R. H. Cole, "Dispersion and absorption in dielectrics. I. Alternating current characteristics," J. Chem. Phys., Vol. 9, 341-352, 1941.

© Copyright 2010 EMW Publishing. All Rights Reserved