Vol. 89
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-02-02
T-Shaped I/O Feed Based Differential Bandpass Filter with Symmetrical Transmission Zeros and High Common Mode Rejection Ratio
By
Progress In Electromagnetics Research M, Vol. 89, 141-149, 2020
Abstract
A T-shaped feed based differential microstrip bandpass filter (BPF) with high common-mode (CM) rejection ratio is presented. The filter comprises two magnetically coupled conventional square open-loop resonators (SOLR), with capacitive coupled T-shaped input-output (I/O). The choice of the T-shaped I/O coupling feed enables a higher common-mode suppression of -57 dB at f0d that extends up to 4.1f0d with a value better than -30 dB. Frequency f0d is the cutoff frequency of the differential-mode (DM) passband. Moreover, this feed can symmetrically position two transmission zeros (TZs) at the upper and lower stopbands. This yields a highly selective and compact filter. Additionally, a T-shaped feed only excites the odd mode of the filter resulting in a wide stopband with high out of band rejection. The upper and stopband rejection of the filter is better than -50 dB. To demonstrate the design, DM and CM lumped models of the filter are proposed and studied. The filter operates at 1.263 GHz with a fractional bandwidth (FBW) of 3.9%. The design is validated experimentally by characterizing DM, CM, common-mode to differential-mode (CD), and differential-mode to common mode (DC). Moreover, the group delay (GD) response of the filter is measured, and a significantly flat response is observed with a maximum delay variation of only 0.88 ns in the 3 dB bandwidth.
Citation
Rida Gadhafi, Dan Cracan, Ademola Akeem Mustapha, and Mihai Sanduleanu, "T-Shaped I/O Feed Based Differential Bandpass Filter with Symmetrical Transmission Zeros and High Common Mode Rejection Ratio," Progress In Electromagnetics Research M, Vol. 89, 141-149, 2020.
doi:10.2528/PIERM19111804
References

1. Hong, J.-S. and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for crosscoupled planar microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 44, 1019-1021, 1996.

2. Feng, W., W. Che, and Q. Xue, "Balanced filters with wideband common mode suppression using dual-mode ring resonators," IEEE Transactions on Circuits And Systems — I: Regular Papers, Vol. 62, No. 6, 1499-1507, 2015.
doi:10.1109/TCSI.2015.2423752

3. Prieto, A. F., et al. "Compact balanced dual-band bandpass filter with magnetically coupled embedded resonators," IET Microwaves, Antennas & Propagation, Vol. 13, No. 4, 492-497, 2019.
doi:10.1049/iet-map.2018.5573

4. Garcia, R. G., R. L. Sanchez, D. Psychogiou, and D. Peroulis, "Multi-stub-loaded differentialmode planar multiband bandpass filters," IEEE Trans. on Circuits and Systems — I: Express Briefs, Vol. 65, No. 3, 271-275, 2018.
doi:10.1109/TCSII.2017.2688336

5. Gao, X., W. Feng, and W. Che, "High selectivity wideband balanced filters using coupled lines with open/short stubs," IEEE Microwave Wireless Compon. Lett., Vol. 27, No. 3, 260-262, 2017.
doi:10.1109/LMWC.2017.2661998

6. Cervantes, J. L. O. and A. C. Chavez, "Microstrip balanced bandpass filter with compact size, extended-stopband and common-mode noise suppression," IEEE Microwave Wireless Compon. Lett., Vol. 23, 530-532, 2013.
doi:10.1109/LMWC.2013.2279096

7. Prieto, A. F., A. Lujambio, J. Martel, F. Medina, F. Mesa, and R. R. Boix, "Simple and compact balanced bandpass filters based on magnetically coupled resonators," IEEE Trans. Microwave Theory Tech., Vol. 63, 1843-1853, 2015.
doi:10.1109/TMTT.2015.2424229

8. Deng, H. W., L. Sun, F. Liu, Y. F. Xue, and T. Xu, "Compact tunable balanced bandpass filter with constant bandwidth based on magnetically coupled resonators," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 4, 2019.
doi:10.1109/LMWC.2019.2902328

9. Xiao, J. K., X. B. Su, H. X. Wang, and J. G. Ma, "Compact microstrip balanced bandpass filter with adjustable transmission zeros," Electronics Letters, Vol. 55, No. 4, 212-214, 2019.
doi:10.1049/el.2018.7689

10. Wu, C. H., C. H. Wang, and C. H. Chen, "Balanced coupled-resonator bandpass filters using multisection resonators for common-mode suppression and stopband extension," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 8, 2007.

11. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, "Microstrip discontinuities I," Microstrip lines and Slot lines, 2nd Edition, 196–200, Artech House, London, 1996.

12. Hong, J. S. and M. J. Lancaster, "Cross-coupled microstrip hairpin resonator filters," IEEE Trans. Microwave Theory Tech., Vol. 46, 118-122, 1998.
doi:10.1109/22.654931

13. Hong, J. S. and M. J. Lancaster, "Coupled resonator circuits," Microstrip Filters for RF/Microwave Applications, 247-249, Wiley Inter Science, NY, 2016.

14. Weber, R. J. and Q. Song, "Introduction to microwave circuits. radio frequency and design applications," IEEE Press Series on RF and Microwave Technology, ISBN 0-7803-4704-8, 2001.

15. White Paper "Balanced device characterization," Agilent Technologies, [Online] Available at www.keysight.com/upload/cmc upload/All/EPSG084733.pdf.