Vol. 96
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-05
Design of Compact Transversal Wideband Bandpass Filter with Wide Upper Stopband
By
Progress In Electromagnetics Research M, Vol. 96, 79-87, 2020
Abstract
A compact wideband bandpass filter (BPF) with stopband suppression by utilizing transversal signal interaction concepts is proposed in this article. Two transmission paths from Port I to Port II are separately constructed by multi-mode step impedance resonator (SIR) and shorted coupled lines. The proposed configuration generates two controllable transmission poles, and wideband characteristic can be realized. Moreover, multiple transmission zeros are implemented by signals superposition of two transmission paths and stub loaded fans resulting in steepness sideband and broad upper stopband suppression up to 100 GHz. For clarification, the designed wideband centered at 4.5 GHz with fractional bandwidth of 14.2% is designed, assembled and measured. The circuit size of prototype BPF only occupies 0.94 cm2, and the presented BPF is evaluated by test results and simulated predictions with good agreement.
Citation
Li Tian Wang, Yang Xiong, Wan-Jing Wang, Li Gong, Zhao Li, Xia Qing Li, and Zhe-Long Liang, "Design of Compact Transversal Wideband Bandpass Filter with Wide Upper Stopband," Progress In Electromagnetics Research M, Vol. 96, 79-87, 2020.
doi:10.2528/PIERM20011001
References

1. Hong, J. S., "Microstrip filters for RF/microwave applications," IEEE Microwave Magazine, Vol. 3, No. 3, 62-65, 2002.

2. Xiong, Y., et al., "Dual-wideband bandpass filter with independently controllable center frequencies and wide stopband," International Journal of Microwave & Wireless Technologies, Vol. 10, 93-99, 2018.
doi:10.1017/S1759078717001179

3. Li, D., et al., "Compact microstrip bandpass filter with sharp roll-off and broad stopband using modified 0 feed structure," International Journal of Electronic and Communications (AEU), No. 7, 17-22, 2019.
doi:10.1016/j.aeue.2019.06.030

4. Malherbe, J. A. G., "Wideband bandpass filter with extremely wide upper stopband," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 6, 2822-2827, 2018.
doi:10.1109/TMTT.2018.2825342

5. Huang, J. M., B. Zhang, and S. S. Li, "Novel compact quad-mode wideband bandpass filter with wide stopband using T-shaped resonator," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 3, 326-333, 2014.
doi:10.1080/09205071.2013.870053

6. Li, S. and Z. Zhang, "Compact multi-order bandpass filter with high stopband rejection performance," Electronics Letters, Vol. 55, No. 12, 701-703, Jun. 13, 2019.
doi:10.1049/el.2019.0840

7. Tang, C., C. Tseng, S. Chiu, and P. Wu, "Design of wide passband/stopband microstrip bandpass filters with the stepped coupled line," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 3, 1095-1103, Mar. 2013.
doi:10.1109/TMTT.2013.2244227

8. Kim, C. H. and K. Chang, "Independently controllable dual-band bandpass filters using asymmetric stepped-impedance resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 12, 3037-3047, 2011.
doi:10.1109/TMTT.2011.2168973

9. Zhang, Z., Q. Yang, and Y.-C. Jiao, "Dual-wideband BPF with wide upper stopband using shorted stepped-impedance stub-loaded lowpass filter," Electronics Letters, Vol. 52, No. 19, 1615-1616, 2016.
doi:10.1049/el.2016.2475

10. Belyaev, B. A., A. M. Serzhantov, A. A. Leksikov, Y. F. Bal’va, and A. A. Leksikov, "Novel high-quality compact microstrip resonator and its application to bandpass filter," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 9, 579-581, Sep. 2015.
doi:10.1109/LMWC.2015.2451363

11. Ta, H. H. and A. Pham, "Compact wide stopband bandpass filter on multilayer organic substrate," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 3, 161-163, Mar. 2014.
doi:10.1109/LMWC.2013.2293672

12. Chen, J. X., et al., "Compact multi-layer bandpass filter with wide stopband using selective feeding scheme," IEEE Transactions on Circuits & Systems II Express Briefs, Vol. 65, No. 8, 1009-1013, 2018.
doi:10.1109/TCSII.2017.2782692

13. Wang, D., B. Wei, B. Cao, J. Chen, T. Zhen, and T. Gao, "A compact wide stopband HTS filter with ground surrounded quasi-interdigital structures," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 11, 703-705, Nov. 2015.
doi:10.1109/LMWC.2015.2479843

14. Lin, S., "New microstrip cascaded-quadruplet bandpass filter based on connected couplings and short-ended parallel-coupled line," IEEE Microwave and Wireless Components Letters, Vol. 24, No. 1, 2-4, Jan. 2014.
doi:10.1109/LMWC.2013.2285226

15. Xu, K., D. Li, and Y. Liu, "High-selectivity wideband bandpass filter using simple coupled lines with multiple transmission poles and zeros," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 2, 107-109, Feb. 2019.
doi:10.1109/LMWC.2019.2891203

16. Killamsetty, V. K. and B. Mukherjee, "Miniaturised highly selective bandpass filter with very wide stopband using meander coupled lines," Electronics Letters, Vol. 53, No. 13, 889-890, 2017.
doi:10.1049/el.2017.1270

17. Gao, X., W. Feng, and W. Che, "Compact ultra-wideband bandpass filter with improved upper stopband using open/shorted stubs," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 2, 123-125, Feb. 2017.
doi:10.1109/LMWC.2016.2647385

18. Li, X., Q. Xia, and J. Zeng, "A compact quadruple-mode ultra-wideband bandpass filter with a broad upper stopband based on transversal-signal interaction concepts," Progress In Electromagnetics Research Letters, Vol. 69, 119-125, 2017.

19. Zhu, L., S. Sun, and R. Li, Microwave Bandpass Filters for Wideband Communications, 45-46, John Wiley & Sons, Inc. Press, 2012.
doi:10.1002/9781118197981

20. Jones, E. M. T., "Coupled-strip-transmission-line filters and directional couplers," IRE Transactions on Microwave Theory and Techniques, Vol. 4, No. 2, 75-81, 1956.
doi:10.1109/TMTT.1956.1125022