Vol. 92
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-05-09
The Dependence of Time-Domain Radiation Loss on the Circumference and Wire Radius of a Circular Loop Antenna
By
Progress In Electromagnetics Research M, Vol. 92, 1-9, 2020
Abstract
The Lienard-Wiechert potentials show explicitly that charge acceleration, i.e., a change in charge velocity, causes radiation of an electromagnetic field. The goal of this discussion is to explore the rate of energy loss due to radiation from current and charge flowing on a circular loop as a function of the loop's curvature and wire radius. The results presented are obtained using a thin-wire, time-domain (TWTD) computer model for Gaussian-pulse excitation. Some results for a straight wire are also presented for comparison. Analytical estimates for the curvature and wire-radius effects are developed from best-fits expressions to the computed results.
Citation
Edmund K. Miller, "The Dependence of Time-Domain Radiation Loss on the Circumference and Wire Radius of a Circular Loop Antenna," Progress In Electromagnetics Research M, Vol. 92, 1-9, 2020.
doi:10.2528/PIERM20011308
References

1. Schelkunoff, S. A., Advanced Antenna Theory, 190, John Wiley & Sons, 1952.

2. Jackson, J. D., Classical Electrodynamics, 401, John Wiley & Sons, 1962.

3. Shen, L.-C., T. T. Wu, and R. W. King, "A simple formula of current in dipole antennas," IEEE Trans. AP-S, Vol. 16, No. 5, 542-547, 1968.
doi:10.1109/TAP.1968.1139241

4. Anderson, B., "Admittance of infinite and finite cylindrical metallic antenna," Radio Science, Vol. 3, No. 6, 607-621, 1968.
doi:10.1002/rds196836607

5. Jones, D. S., Methods in Electromagnetic Wave Propagation, 295, Clarendon Press, 1994.
doi:10.1109/9780470545256

6. Miller, E. K., "The proportionality between charge acceleration and radiation from a generic wire object," Progress In Electromagnetics Research, Vol. 162, 15-29, 2018.
doi:10.2528/PIER18022001

7. Landt, J. A., E. K. Miller, and M. Van Blaricum, "WT-MBA/LLL1B (TWTD): A computer program for the time-domain electromagnetic response of thin-wire structures,", Lawrence Livermore Laboratory, Report No. UCRL-51585, 1974.

8. Miller, E. K., A. J. Poggio, and G. J. Burke, "An integro-differential equation technique for the time-domain analysis of thin-wire structures, Part I: The numerical method," Journal of Computational Physics, Vol. 12, 24-48, 1973.
doi:10.1016/0021-9991(73)90167-8

9. Poggio, A. J., E. K. Miller, and G. J. Burke, "An integro-differential equation technique for the time-domain analysis of thin-wire structures. Part II: Numerical results," Journal of Computational Physics, Vol. 12, 210-233, 1973.
doi:10.1016/S0021-9991(73)80012-9

10. Paul, C. R., "Partial Inductance," IEEE EMC Society Magazine, 34-42, 2010 (Summer).

11. Miller, E. K., "Time-domain computation of loop inductance," IEEE EMC Society Magazine, 34-42, 2011 (Summer).