PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 92 > pp. 127-136

VECTOR MAGNETIC NEAR-FIELD MEASUREMENT IN UNIT CELL OF METAMATERIAL

By Y. Qi, Z. Gao, C. Lan, M. Wu, and Q. Zhao

Full Article PDF (1,168 KB)

Abstract:
Near-field magnetic measurement is a simple but effective way of researching the magical electromagnetic properties of metamaterials. However, till now, the experiments in the field of metamaterials have involved only far-field macroscopic and near-field electric measurements because of the difficulty in isolating interference from electric fields. In this research, we design and fabricate a near-field magnetic probe with about an one-tenth wavelength size and 20 dB E-field rejection ratio, which can be combined with a parallel double-plate device integrating a system for measuring anisotropic vector magnetic field. As a verification measurement of plane waves and cylindrical waves, it got the clear vector field distribution characteristics and good anisotropy. Next we used the dipole to measure the typical metal split ring structure of the metamaterial. The measurement of the distribution of magnetic fields contributes to revealing the interaction mechanism between electromagnetic waves and metamaterials as well as the relationship between microscopic structural elements and macroscopic electromagnetic properties.

Citation:
Y. Qi, Z. Gao, C. Lan, M. Wu, and Q. Zhao, "Vector Magnetic Near-Field Measurement in Unit Cell of Metamaterial," Progress In Electromagnetics Research M, Vol. 92, 127-136, 2020.
doi:10.2528/PIERM20011401

References:
1. Pendry, J. B., "Beyond metamaterials," Nat. Mater, Vol. 5, No. 10, 763-764, 2006.
doi:10.1038/nmat1740

2. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, No. 19, 195104, 2001.
doi:10.1103/PhysRevB.65.195104

3. Justice, B. J., J. J. Mock, L. Guo, A. Degiron, and D. R. Smith, "Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials," Opt. Express, Vol. 14, No. 19, 8694-8705, 2006.
doi:10.1364/OE.14.008694

4. Bi, K., Y. Guo, J. Zhou, G. Dong, H. Zhao, Q. Zhao, Z. Xiao, X. Liu, and C. Lan, "Negative and near zero refraction metamaterials based on permanent magnetic ferrites," Sci. Rep., Vol. 4, 4139, 2014.

5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

6. Liu, R., C. Jic, J. J. Mock, J. Y. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, No. 5912, 366-369, 2009.
doi:10.1126/science.1166949

7. Landy, N. and D. R. Smith, "A full-parameter unidirectional metamaterial cloak for microwaves," Nat. Mater, Vol. 12, No. 1, 25-28, 2013.
doi:10.1038/nmat3476

8. Peng, R. G., Z. Q. Xiao, Q. Zhao, F. L. Zhang, Y. G. Meng, B. Li, J. Zhou, Y. C. Fan, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, "Temperature-controlled chameleonlike cloak," Phys. Rev. X, Vol. 7, 011033, 2017.

9. Cheng, Q., T. J. Cui, W. X. Jiang, and B. G. Cai, "An omnidirectional electromagnetic absorber made of metamaterials," New J. Phys., Vol. 12, No. 6, 063006, 2010.
doi:10.1088/1367-2630/12/6/063006

10. Zhao, Q., Z. Q. Xiao, F. L. Zhang, J. M. Ma, M. Qiao, Y. G. Meng, C. W. Lan, B. Li, J. Zhou, P. Zhang, N. H. Shen, T. Koschny, and C. M. Soukoulis, "Tailorable zero-Phase delay of subwavelength particles toward miniaturized wave manipulation devices," Adv. Mater., Vol. 27, 6187, 2015.
doi:10.1002/adma.201502298

11. Zhao, Q., L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," Phys. Rev. Lett., Vol. 101, 027402, 2008.
doi:10.1103/PhysRevLett.101.027402

12. Yang, X. M., X. Y. Zhou, Q. Cheng, H. F. Ma, and T. J. Cui, "Diffuse reflections by randomly gradient index metamaterials," Opt. Lett., Vol. 35, No. 6, 808-810, 2010.
doi:10.1364/OL.35.000808

13. Kaelberer, T., V. A. Fedotov, N. Papasimakis, D. P. Tsai, and N. I. Zheludev, "Toroidal dipolar response in a metamaterial," Science, Vol. 330, No. 6010, 1510-1512, 2010.
doi:10.1126/science.1197172

14. Guo, L. Y., M. H. Li, Q. W. Ye, B. X. Xiao, and H. L. Yang, "Electric toroidal dipole response in split-ring resonator metamaterials," Phys. Condens. Matter, Vol. 85, No. 6, 208-471, 2012.

15. Basharin, A. A., M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, "Dielectric metamaterials with toroidal dipolar response," Phys. Rev. X, Vol. 5, No. 1, 1-11, 2015.

16. Xu, S., A. Sayanskiy, A. S. Kupriianov, V. R. Tuz, P. Kapitanova, H. Sun, W. Han, and Y. S. Kivshar, "Experimental observation of toroidal dipole modes in all-dielectric metasurfaces," Adv. Opt. Mater., Vol. 7, No. 4, 1801166, 2018.
doi:10.1002/adom.201801166

17. Carobbi, C. F. M., L. M. Millanta, and L. Chiosi, "The high-frequency behavior of the shield in the magnetic-field probes," IEEE Int. Symp. Electromagn. Compat., Vol. 1, 35-40, 2000.

18. Balanis, C. A., Antenna Theory: Analysis and Design, Harper & Row, 1996.


© Copyright 2010 EMW Publishing. All Rights Reserved