Vol. 90
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-03-19
Printed 5G MIMO Antenna Arrays in Smartphone Handset for LTE Bands 42/43/46 Applications
By
Progress In Electromagnetics Research M, Vol. 90, 167-184, 2020
Abstract
In this paper, a dual-band 4-, 6- and 8-element multiple-input multiple-output (MIMO) antenna arrays operating at the sub-6-GHz (LTE 42/43 and 46) bands for the fifth-generation (5G) smartphones are proposed. To realize these three MIMO applications in two LTE bands, miniaturized spiral and meander line-shaped strips coupled-fed patch antenna elements are printed on the front side of an FR4 system circuit board and are able to excite two resonance modes. Polarization and spatial diversity techniques are applied to these elements so that the enhanced isolation and reduced coupling effects can be attained. The proposed single antenna element besides 8-element antenna array has been fabricated and experimentally measured. Desirable simulated and measured S-parameters (reflection and transmission coefficients) are obtained for the antenna arrays over the working dual frequency bands. The diversity performance, such as the envelope correlation coefficient (ECC) and diversity gain (DG), has also been simulated and analyzed. Moreover, the performance results, antenna gain and efficiency over the bands, and radiation patterns at the specified resonant frequencies are also presented.
Citation
Haneen Sobhi Aziz, and Dhirgham Kamal Naji, "Printed 5G MIMO Antenna Arrays in Smartphone Handset for LTE Bands 42/43/46 Applications," Progress In Electromagnetics Research M, Vol. 90, 167-184, 2020.
doi:10.2528/PIERM20011905
References

1. Andrews, J. G., S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, Jun. 2014.
doi:10.1109/JSAC.2014.2328098

2. Ren, Z. and A. Zhao, "Dual-band MIMO antenna with compact self-decoupled antenna pairs for 5G mobile applications," IEEE Access, Vol. 7, 82288-82296, 2019.
doi:10.1109/ACCESS.2019.2923666

3. Varzakas, P., "Average channel capacity for rayleigh fading spread spectrum MIMO systems," International Journal of Communication Systems, Vol. 19, No. 10, 1081-1087, 2006.
doi:10.1002/dac.784

4. Sharma, M. K., M. Kumar, J. P. Saini, and S. P. Singh, "Computationally optimized MIMO antenna with improved isolation and extended bandwidth for UWB applications," Arabian Journal for Science and Engineering, 1-11, May 2019.

5. Li, Y., C.-Y.-D. Sim, Y. Luo, and G. Yang, "Multiband 10-antenna array for sub-6GHz MIMO applications in 5-G smartphones," IEEE Access, Vol. 6, 28041-28053, 2018.
doi:10.1109/ACCESS.2018.2838337

6. Zhao, A. and Z. Ren, "Multiple-input and multiple-output antenna system with self-isolated antenna element for fifth-generation mobile terminals," Microwave and Optical Technology Letters, Vol. 61, No. 1, 20-27, 2019.
doi:10.1002/mop.31515

7. Roy, S., S. Ghosh, and U. Chakarborty, "Compact dual wide-band four/eight elements MIMO antenna for WLAN applications," International Journal of RF and Microwave Computer-Aided Engineering, e21749, 2019.
doi:10.1002/mmce.21749

8. Qin, Z., W. Geyi, M. Zhang, and J. Wang, "Printed eight-element MIMO system for compact and thin 5G mobile handset," Electronics Letters, Vol. 52, No. 6, 416-418, 2016.
doi:10.1049/el.2015.3960

9. Barani, I. R. R., K.-L. Wong, Y.-X. Zhang, and W.-Y. Li, "Low-profile wideband conjoined open-slot antennas fed by grounded coplanar waveguides for 4 W 4 5G MIMO operation," IEEE Transactions on Antennas and Propagation, 2019.

10. Wong, K.-L., Y.-H. Chen, and W.-Y. Li, "Decoupled compact ultra-wideband MIMO antennas covering 3300 ∼ 6000 MHz for the fifth-generation mobile and 5 GHz-WLAN operations in the future smartphone," Microwave and Optical Technology Letters, Vol. 60, No. 10, 2345-2351, 2018.

11. Huang, C., Y.-C. Jiao, and Z.-B. Weng, "Novel compact CRLH-TL-based tri-band MIMO antenna element for the 5G mobile handsets," Microwave and Optical Technology Letters, Vol. 60, No. 10, 2559-2564, 2018.

12. Alsaif, H., M. Usman, M. T. Chughtai, and J. Nasir, "Cross polarized 2×2 UWB-MIMO antenna system for 5G wireless applications," Progress In Electromagnetics Research M, Vol. 76, 157-166, 2018.
doi:10.2528/PIERM18101103

13. Idrees Magray, M., G. S. Karthikeya, K. Muzaffar, and S. K. Koul, "Corner bent integrated design of 4G LTE and mmWave 5G antennas for mobile terminals," Progress In Electromagnetics Research M, Vol. 84, 167-175, 2019.
doi:10.2528/PIERM19062603

14. Hussain, R., A. T. Alreshaid, S. K. Podilchak, and M. S. Sharawi, "Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets," IET Microw. Antennas Propag., Vol. 11, No. 2, 271-279, 2017.
doi:10.1049/iet-map.2016.0738

15. Parchin, N. O., Y. I. A. Al-Yasir, A. H. Ali, I. Elfergani, J. M. Noras, J. Rodriguez, and R. A. Abd-Alhameed, "Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications," IEEE Access, Vol. 7, 15612-15622, 2019.
doi:10.1109/ACCESS.2019.2893112

16. Parchin, N. O., H. Jahanbakhsh, M. Alibakhshikenari, Y. Ojaroudi, Y. I. Al-Yasir, R. A. Abd- Alhameed, and E. Limiti, "Mobile-phone antenna array with diamond-ring slot elements for 5G massive MIMO Systems," Electronics, Vol. 8, No. 5, 1-17, 2019.

17. Li, Y., Y. Luo, and G. Yang, "High-isolation 3.5 GHz eight-antenna MIMO array using balanced open-slot antenna element for 5G smartphones," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 3820-3830, 2019.
doi:10.1109/TAP.2019.2902751

18. Li, J., X. Zhang, Z. Wang, X. Chen, J. Chen, Y. Li, and A. Zhang, "Dual-band eight-antenna array design for MIMO applications in 5G mobile terminals," IEEE Access, Vol. 7, 71636-71644, 2019.
doi:10.1109/ACCESS.2019.2908969

19. Li, Y. and G. Yang, "Dual-mode and triple-band 10-antenna handset array and its multiple-input multiple-output performance evaluation in 5G," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 2, e21538, 2019.
doi:10.1002/mmce.21530

20. Pedram, K., M. Naderi, F. S. Jafari, and F. B. Zarrabi, "Compact quad-band second harmonic antenna based on metamaterial DRA load," Microwave and Optical Technology Letters, Vol. 61, No. 8, 1938-1944, 2019.
doi:10.1002/mop.31821

21. Jabar, A. A. S. A. and D. K. Naji, "Design of miniaturized quad-band dual-arm spiral patch antenna for RFID, WLAN and WiMAX applications," Progress In Electromagnetics Research C, Vol. 91, 97-113, 2019.
doi:10.2528/PIERC19011706

22. Jabar, A. A. S. A. and D. K. Naji, "Optimization design methodology of miniaturized five-band antenna for RFID, GSM, and WiMAX applications," Progress In Electromagnetics Research B, Vol. 83, 177-201, 2019.
doi:10.2528/PIERB19012905

23. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., John Wiley & Sons, 2016.

24. Naji, D. K., "Design of a compact orthogonal broadband printed MIMO antennas for 5-GHz ISM band operation," Progress In Electromagnetics Research B, Vol. 64, 47-62, 2015.
doi:10.2528/PIERB15092104