Vol. 91

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-04-09

Beam Steering Fabry Perot Array Antenna for mm -Wave Application

By Saeid Karamzadeh, Vahid Rafiei, and Mesut Kartal
Progress In Electromagnetics Research M, Vol. 91, 81-89, 2020
doi:10.2528/PIERM20020101

Abstract

Beam-steering antennas especially with Butler matrix feed network are an effective remedy for wireless communications systems troubles such as disruptive effects in mm-wave frequency. In this work, a novel 4×4 Butler matrix feed beam steering antenna is designed at 35 GHz. A zeroth order resonance antenna element is used for bandwidth and radiation efficiency increment. To increase the gain of the antenna a novel mm-wave Fabry Perot layer which is composed of a partially reflective surface is designed. All designing steps are presented.

Citation


Saeid Karamzadeh, Vahid Rafiei, and Mesut Kartal, "Beam Steering Fabry Perot Array Antenna for mm -Wave Application," Progress In Electromagnetics Research M, Vol. 91, 81-89, 2020.
doi:10.2528/PIERM20020101
http://www.jpier.org/PIERM/pier.php?paper=20020101

References


    1. Ko, S. T. and J. H. Lee, "Aperture coupled metamaterial patch antenna with broad E-plane beamwidth for millimeter wave application," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1796-1797, Orlando, FL, 2013, doi: 10.1109/APS.2013.6711557.

    2. Lee, C.-H. and J.-H. Lee, "Millimeter-wave wide beamwidth aperture-coupled antenna designed by mode synthesis," Microw. Opt. Technol. Lett., Vol. 57, 1255-1259, 2015, doi: 10.1002/mop.29058.
    doi:10.1002/mop.29058

    3. Ko, S. T. and J. H. Lee, "Hybrid zeroth-order resonance patch antenna with broad E-plane beamwidth," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 19-25, Jan. 2013, doi: 10.1109/TAP.2012.2220315.
    doi:10.1109/TAP.2012.2220315

    4. Artemenko, A., A. Mozharovskiy, A. Maltsev, R. Maslennikov, A. Sevastyanov, and V. Ssorin, "Experimental characterization of E-band two-dimensional electronically beam-steerable integrated lens antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1188-1191, 2013, doi: 10.1109/LAWP.2013.2282212.
    doi:10.1109/LAWP.2013.2282212

    5. Gheethan, A., M. C. Jo, R. Guldiken, and G. Mumcu, "Microfluidic based Ka-band beam-scanning focal plane array," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1638-1641, 2013, doi: 10.1109/LAWP.2013.2294153.
    doi:10.1109/LAWP.2013.2294153

    6. Karamzadeh, S., V. Rafii, M. Kartal, and B. S. Virdee, "Compact and broadband 4×4 SIW Butler matrix with phase and magnitude error reduction," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 12, 772-774, Dec. 2015, doi: 10.1109/LMWC.2015.2496785.
    doi:10.1109/LMWC.2015.2496785

    7. Karamzadeh, S., V. Rafii, M. Kartal, and B. S. Virdee, "Modified circularly polarised beam steering array antenna by utilised broadband coupler and 4×4 Butler matrix," IET Microwaves, Antennas & Propagation, Vol. 9, No. 9, 975-981, Jun. 18, 2015, doi: 10.1049/iet-map.2014.0768.
    doi:10.1049/iet-map.2014.0768

    8. Haraz, O. M. and A. R. Sebak, "Two-layer butterfly-shaped microstrip 4×4 Butler matrix for ultrawideband beam-forming applications," 2013 IEEE International Conference on Ultra-Wideband (ICUWB), 1-6, Sydney, NSW, 2013, doi: 10.1109/ICUWB.2013.6663812.

    9. Alreshaid, A. T., M. S. Sharawi, S. Podilchak, and K. Sarabandi, "Compact millimeter-wave switched-beam antenna arrays for short range communications," Microw. Opt. Technol. Lett., Vol. 58, 1917-1921, 2016, doi:10.1002/mop.29940.
    doi:10.1002/mop.29940

    10. Hu, W., et al., "94 GHz dual-reflector antenna with reflectarray subreflector," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3043-3050, 2009.
    doi:10.1109/TAP.2009.2029275

    11. Von Trentini, G., "Partially reflecting sheet arrays," IRE Transactions on Antennas and Propagation, Vol. 4, No. 4, 666-671, 1956.
    doi:10.1109/TAP.1956.1144455

    12. Sauleau, R., P. Coquet, and T. Matsui, "Low-profle directive quasi-planar antennas based on millimetre wave Fabry-Perot cavities," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 150, No. 4, 274-278, 2003.
    doi:10.1049/ip-map:20030416

    13. Lee, Y., X. Lu, Y. Hao, S. Yang, J. R. G. Evans, and C. G. Parini, "Low-profle directive millimeter-wave antennas using free-formed three-dimensional (3-D) electromagnetic bandgap structures," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 2893-2903, 2009.
    doi:10.1109/TAP.2009.2029299

    14. Tan, G.-N., X. Yang, H.-G. Xue, and Z. Lu, "A dual-polarized Fabry-Perot cavity antenna at Ka band with broadband and high gain," Progress In Electromagnetics Research C, Vol. 60, 179-186, 2015.
    doi:10.2528/PIERC15110501

    15. Hosseini, A., F. Capolino, and F. De Flaviis, "Gain enhancement of a V-band antenna using a Fabry-Perot cavity with a self-sustained all-metal cap with FSS," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, 909-921, 2015.
    doi:10.1109/TAP.2014.2386358

    16. Hosseini, S. A., F. Capolino, and F. De Flaviis, "Q-band single layer planar Fabry-Perot cavity antenna with single integrated-feed," Progress In Electromagnetics Research C, Vol. 52, 135-144, 2014.
    doi:10.2528/PIERC14061808