Vol. 94
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-07-05
PBG Structured Compact Antenna with Switching Capability in Lower and Upper Bands of 5G
By
Progress In Electromagnetics Research M, Vol. 94, 19-29, 2020
Abstract
A novel integrated compact antenna with photonic band gap (PBG) structure, having switching capability between lower and upper bands of 5G cellular communication is proposed. The proposed antenna can operate in the lower band (3.1 GHz to 3.5 GHz) as well as in the upper band (24 GHz to 27 GHz) of 5G cellular communication. Two radiating patches for the aforementioned frequency bands are developed in the same structure. A small patch for the upper-frequency band is inserted into a rectangular slot made in a large patch of the lower-frequency band. Both patches radiate at different times with the same ground. Two PIN diodes have been used to excite both patches at different times. The results indicate that the antenna has higher gain and wider bandwidth than the conventional antenna without a PBG structure.
Citation
Jasmine Saini, and Manoj Kumar Garg, "PBG Structured Compact Antenna with Switching Capability in Lower and Upper Bands of 5G," Progress In Electromagnetics Research M, Vol. 94, 19-29, 2020.
doi:10.2528/PIERM20022202
References

1. See, C. H., R. A. Abd-Alhameed, A. A. Atojoko, N. J. McEwan, and P. S. Excell, "Link budget maximization for a mobile band subsurface wireless sensor in challenging water utility environments," IEEE Transactions on Industrial Electronics, Vol. 65, No. 1, 616-625, Jan. 2018.
doi:10.1109/TIE.2017.2719602

2. A White Paper on Enabling 5G in India, Telecom Regulatory Authority of India, Feb. 22, 2019.

3. Hong, W., Z. H. Jiang, C. Yu, J. Zhou, P. Chen, and Z. Yu, "Multibeam antenna technologies for 5G wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6231-6249, Dec. 2017.
doi:10.1109/TAP.2017.2712819

4. Ashraf, N., O. Haraz, M. A. Ashraf, and S. Alshebeili, "28/38-GHz dual-band millimeter-wave SIW array antenna with EBG structures for 5G applications," 2015 International Conference on Information and Communication Technology Research (ICTRC), 5-8, 2015.
doi:10.1109/ICTRC.2015.7156407

5. Cheng, H. R., Q. Song, Y.-C. Guo, X.-Q. Chen, and X.-W. Shi, "Design of a novel EBG structure and its application in fractal microstrip antenna," Progress In Electromagnetics Research C, Vol. 11, 81-90, 2009.
doi:10.2528/PIERC09091403

6. An, W., Y. Li, H. Fu, J. Ma, W. Chen, and B. Feng, "Low-profile and wideband microstrip antenna with stable gain for 5G wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 4, 621-624, Apr. 2018.
doi:10.1109/LAWP.2018.2806369

7. Aliakbari, H., A. Abdipour, R. Mirzavand, A. Costanzo, and P. Mousavi, "A single feed dual-band circularly polarized millimeter-wave antenna for 5G communication," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-5, 2016.

8. Firdausi, A., G. Hakim, and M. Alaydrus, "Designing a tri-band microstrip antenna for targetting 5G broadband communications ," MATEC Web of Conferences, Vol. 218, 03015, ICIEE, 2018.
doi:10.1051/matecconf/201821803015

9. Mak, K. M., H. W. Lai, K. M. Luk, and C. H. Chan, "Circularly polarized patch antenna for future 5G mobile phones," IEEE Access, Vol. 2, 1521-1529, Dec. 2014.

10. Neto, A. S. E. S., M. L. M. Dantas, J. S. Silva, and H. C. C. Fernandes, "Antenna for the fifth-generation (5G) using an EBG structure," Advances in Intelligent Systems and Computing, Vol. 354, 33-38, Springer International Publishing Switzerland 2015, 2015.

11. Haraz, O., M. M. M. Ali, A. Elboushi, and A. Sebak, "Four-element dual-band printed slot antenna array for the future 5G mobile communication networks," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1-2, Jul. 2015.

12. Haraz, O. M., A. Elboushi, S. A. Alshebeili, and A. R. Sebak, "Dense dielectric patch array antenna with improved radiation characteristics using EBG ground structure and dielectric superstrate for future 5G cellular networks," IEEE Access, Vol. 2, 909-913, 2014.
doi:10.1109/ACCESS.2014.2352679

13. Chu, C., J. Zhu, S. Liao, A. Zhu, and Q. Xue, "28/38 GHz dual-band dual-polarized highly isolated antenna for 5G phased array applications," 2019 IEEE MTT-S International Wireless Symposium (IWS), 1-3, Guangzhou, China, May 19-22, 2019.

14. Saedi, H. A., J. A. Attari, W. M. A. Wahab, R. Mittra, and S. S. Naeini, "Single-feed dual-band aperture-coupled antenna for 5G applications," 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Aug. 19-22, 2018.

15. Singh, P. K. and J. Saini, "Effect of varying curvature and inter element spacing on dielectric coated conformal microstrip antenna array," Progress In Electromagnetics Research M, Vol. 58, 11-19, 2017.
doi:10.2528/PIERM17022012

16. Singh, P. K. and J. Saini, "Reconfigurable microstrip antennas conformal to cylindrical surface," Progress In Electromagnetics Research Letters, Vol. 72, 119-126, 2018.
doi:10.2528/PIERL17111002

17. Zaidi, A., A. Baghdad, A. Ballouk, and A. Badri, "High gain microstrip patch antenna, with PBG substrate and PBG cover, for millimeter wave applications," 2018 4th International Conference on Optimization and Applications (ICOA), 1-6, Mohammedia, 2018.

18. AbuTarboush, H. F., H. S. Al-Raweshidy, and R. Nilavalan, "Bandwidth enhancement for small patch antenna using PBG structure for different wireless applications," 2009 IEEE International Workshop on Antenna Technology, 1-4, Santa Monica, CA, 2009.

19. Qian, Y, R. Coccioli, D. Sievenpiper, V. Radisic, and E. Yablonovitch, "A microstrip patch antenna using novel photonic band-gap structures," Microwave Journal, Vol. 42, 66-71, Jan. 1999.

20. Wu, Y. and T. Fu, "The study on a patch antenna with PBG structure," 2009 Third International Symposium on Intelligent Information Technology Application, 565-567, Shanghai, 2009.

21. Jha, K. R. and G. Singh, "Analysis and design of terahertz microstrip antenna on photonic bandgap material," Journal of Computation Electronics, Vol. 11, No. 4, 364-373, 2012.
doi:10.1007/s10825-012-0416-9

22. Temelkuran, B., M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, "Photonic crystal-based resonant antenna with very high directivity," Journal of Applied Physics, Vol. 87, No. 1, 603-605, Jan. 2000.
doi:10.1063/1.371905

23. Singh, A. and S. Singh, "A trapezoidal microstrip patch antenna on photonic crystal substrate for high speed THz applications," Photonics Nanostructures Fundamentals Applied, Vol. 14, 52-62, 2015.
doi:10.1016/j.photonics.2015.01.003

24. Kushwaha, R. K., P. Karuppanan, and L. D. Malviya, "Design and analysis of novel microstrip patch antenna on photonic crystal in THz," Physica B Condensed Matter, Vol. 545, 107-112, 2018.
doi:10.1016/j.physb.2018.05.045

25. Nejati, A., R. A. Sadeghzadeh, and F. Geran, "Effect of photonic crystal and frequency selective surface implementation on gain enhancement in the microstrip patch antenna at terahertz frequency," Physica B Condensed Matter, Vol. 449, 113-120, 2014.
doi:10.1016/j.physb.2014.05.014

26. Dadras, M., P. Rezaei, and M. Danaie, "Planar double-band monopole antenna with photonic crystal structure," Indian J. Sci. Technology, Vol. 8, No. 36, 1-4, 2016.
doi:10.17485/ijst/2015/v8i36/87670

27. Wu, Y. and T. Fu, "The study on a patch antenna with PBG structure," 2007 Workshop on Intelligent Information Technology Applications, Vol. 3, 565-567, Nov. 21-22, 2009.

28. AbuTarboush, H. F., H. S. Al-Raweshidy, and R. Nilavalan, "Bandwidth enhancement for patch antenna using PBG slot structure for 5, 6 and 9GHz applications," 2009 IEEE 10th Annual Wireless and Microwave Technology Conference, 1-1, Apr. 20-21, 2009.

29. Pandey, A. K., M. Chauhan, V. Killamsetty, and B. Mukherjee, "High gain compact rectangular dielectric resonator antenna using metamaterial as superstrate," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 12, 1-10, Wiley, 2019.

30. Sinha, M., V. Killamsetty, and B. Mukherjee, "Near field analysis of rdra loaded with split ring resonators superstrate ," Microwave and Optical Technology Letters, Vol. 60, No. 2, 472-478, Wiley, 2018.
doi:10.1002/mop.30995

31. Mukherjee, B., D. Kumar, and M. Gupta, "A novel hemispherical dielectric resonator antenna on an electromagnetic band gap substrate for broadband and high gain systems," AEU --- International Journal of Electronics and Communication, Vol. 68, 1185-1190, Elsevier, 2014.

32. Liu, S., S. Qi, W. Wu, and D. Fang, "Single-layer single-patch four-band asymmetrical U-slot patch antenna ," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 9, 4895-4899, Sept. 2014.
doi:10.1109/TAP.2014.2335816

33. Garg, M. K. and J. Saini, "Multi-band and multi-parameter reconfigurable slotted patch antenna with embedded biasing network ," (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 10, 2019.

34. Hocinia, A., M. N. Temmara, D. Khedrouchea, and M. Zamanib, "Novel approach for the design and analysis of a terahertz microstrip patch antenna based on photonic crystals," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 36, 100723, Sept. 2019.
doi:10.1016/j.photonics.2019.100723

35. Kumar, C., M. I. Pasha, and D. Guha, "Microstrip patch with non-proximal symmetric defected ground structure (DGS) for improved cross-polarization properties over principal radiation planes," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1412-1414, Feb. 2015.
doi:10.1109/LAWP.2015.2406772