PIER M
 
Progress In Electromagnetics Research M
ISSN: 1937-8726
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 95 > pp. 13-23

A SMALL FORM FACTOR IMPEDANCE TUNED MICROSTRIP ANTENNA WITH IMPROVED GAIN RESPONSE

By S. B. Behera, D. Barad, and S. Behera

Full Article PDF (821 KB)

Abstract:
This research work adopts an open-circuited-series stub-tuning in sequence with unmatched antenna radiator to bring out a small form factor. Thereby, the effective antenna radiator size has been shrunk up to 0.2λ, where similar efficiency and beam pattern has been maintained. The antenna is conceptualized with symmetrical slots, which indicates a multi-ring structure to contribute multiband miniaturization. This consists a loop based rectangular-ring connected with an E-shaped patch, which is excited through a microstrip stepper impedance transmission line followed by an equally distributed strip-line. It enables enhanced impedance-matching at 2.76 GHz and 6.34 GHz by a stepper impedance transmission line with stub-loading technique. The antenna aperture area miniaturization of 56% has been achieved by introducing slots on the radiator patch. Moreover, this miniaturized patch exhibits improved gain response of 4.43 dBi and 5.37 dBi in the broadside direction. The proposed design occupies a dimension of (0.22λ × 0.26λ) mm2.

Citation:
S. B. Behera, D. Barad, and S. Behera, "A Small Form Factor Impedance Tuned Microstrip Antenna with Improved Gain Response," Progress In Electromagnetics Research M, Vol. 95, 13-23, 2020.
doi:10.2528/PIERM20031903
http://www.jpier.org/pierm/pier.php?paper=20031903

References:
1. Biswas, P., S. De, B. Bag, D. Chanda Sarkar, S. Biswas, and P. P. Sarkar, "Dual ISM band printed antenna with omnidirectional radiation pattern and better radiation efficiency," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, e21780, 2019.

2. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Miniaturized multiband microstrip patch antenna using metamaterial loading for wireless application," Progress In Electromagnetics Research C, Vol. 83, 71-82, 2018.
doi:10.2528/PIERC18012905

3. Zhang, Y. P., "A dielectric loaded miniature antenna for microcellular and personal communication," Proc. IEEE AP-Symp., 1152-1155, June 1995.

4. Hanae, E., N. Amar Touhami, and M. Aghoutane, "Miniaturized microstrip patch antenna with spiral defected microstrip structure," Progress In Electromagnetics Research Letters, Vol. 53, 37-44, 2015.
doi:10.2528/PIERL15031003

5. Hung, T., J. Liu, C. Wei, C. Chen, and S. Bor, "Dual-band circularly polarized aperture-coupled stack antenna with fractal patch for WLAN and WiMAX applications," Int. J. RF Microw. Comput. Aided Eng., Vol. 24, 130-138, 2014.
doi:10.1002/mmce.20720

6. Samantaray, D., S Bhattacharyya, and K. V. Srinivas, "A modified fractal-shaped slotted patch antenna with defected ground using metasurface for dual band applications," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, e21932, 2019.
doi:10.1002/mmce.21932

7. Mandal, K. and P. P. Sarkar, "A compact high gain microstrip antenna for wireless applications," AEU International Journal of Electronics and Communication, Vol. 67, 1010-1014, 2013.
doi:10.1016/j.aeue.2013.06.001

8. Khandelwala, M. K., B. K. Kanaujia, S. Dwaria, S. Kumar, and A. K. Gautam, "Analysis and design of dual band compact stacked Microstrip patch antenna with defected ground structure for WLAN/WiMax applications," AEU International Journal of Electronics and Communication, Vol. 69, 39-47, 2015.
doi:10.1016/j.aeue.2014.07.018

9. Pinhas, S. and S. Shtrikman, "Comparison between computed and measured bandwidth of quarter-wave microstrip radiators," IEEE Trans. Antennas and Propag., Vol. 36, No. 11, 1615-1616, November 1988.
doi:10.1109/8.9713

10. Chair, R., K. F. Lee, and K. M. Luk, "Bandwidth and cross-polarization characteristics of quarter-wave shorted patch antennas," Microw. Opt. Technol. Lett., Vol. 22, No. 2, 101-103, 1999.
doi:10.1002/(SICI)1098-2760(19990720)22:2<101::AID-MOP7>3.0.CO;2-X

11. Waterhouse, R., "Small microstrip patch antenna," Electron. Lett., Vol. 31, No. 8, 604-605, 1995.
doi:10.1049/el:19950426

12. Shi, H., J. Li, J. Shi, J. Chen, Z. Li, S. Zhu, T. A. Khan, and A. Zhang, "Miniaturized circularly polarized patch antenna using coupled shorting strip and capacitive probe feed," AEU International Journal of Electronics and Communication, Vol. 98, 235-240, 2019.
doi:10.1016/j.aeue.2018.11.022

13. Motevasselian, A. and W. G. Whittow, "Miniaturization of a circular patch microstrip antenna using an arc projection," IEEE Antennas & Wireless Propagation Letters, Vol. 16, 517-520, 2017.
doi:10.1109/LAWP.2016.2586749

14. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Trans. Antennas and Propag., Vol. 60, No. 5, 2175-2182, 2012.
doi:10.1109/TAP.2012.2189699

15. Jahani, S., J. Rashed-Mohassel, and M. Shahabadi, "Miniaturization of circular patch antennas using MNG metamaterials," IEEE Antennas & Wireless Propagation Letters, Vol. 9, 1194-1196, 2010.
doi:10.1109/LAWP.2010.2098472

16. Farzami, F., K. Forooraghi, and M. Norooziarab, "Miniaturization of a microstrip antenna using a compact and thin magneto-dielectric substrate," IEEE Antennas & Wireless Propagation Letters, Vol. 10, 1540-1542, 2011.
doi:10.1109/LAWP.2011.2181968

17. Zong, B., G. Wang, C. Zhou, and Y. Wang, "Compact low-profile dual-band patch antenna using novel TL-MTM structures," IEEE Antennas & Wireless Propagation Letters, Vol. 14, 567-570, 2015.
doi:10.1109/LAWP.2014.2372093

18. Hsieh, C., C. Wu, and T. Ma, "A compact dual-band filtering patch antenna using step impedance resonators," IEEE Antennas & Wireless Propagation Letters, Vol. 14, 1056-1059, 2015.
doi:10.1109/LAWP.2015.2390033

19. Chen, H., Y. Wang, Y. Lin, S. Lin, and S. Pan, "A compact dual-band dielectric resonator antenna using a parasitic slot," IEEE Antennas & Wireless Propagation Letters, Vol. 8, 173-176, 2009.
doi:10.1109/LAWP.2008.2001119

20. Hanae, E., N. Amar Touhami, M. Aghoutane, S. El Amrani, A. Tazon, and M. Boussouis, "Miniaturized microstrip patch antenna with defected ground structure," Progress In Electromagnetics Research C, Vol. 55, 25-33, 2014.

21. Latif, S. I., L. Shafai, and C. Shafai, "An engineered conductor for gain and efficiency improvement of miniaturized microstrip antennas," IEEE Antennas Propag. Mag., Vol. 55, No. 2, 77-90, 2013.
doi:10.1109/MAP.2013.6529319

22. Luo, Y. and Z. N. Chen, "A gain-enhanced patch antenna using a ghost reversal source," Proc. in IEEE International Workshop on Antenna Technology (iWAT), 1-4, China, 2018.

23. Ambresh, P. A., P. M. Hadalgi, P. V. Hunagund, "Effect of slots on microstrip patch antenna characteristics," 2011 International Conference on Computer, Communication and Electrical Technology (ICCCET), 239-241, March 18–19, 2011.

24. Ansari, J. A., A. Mishra, N. P. Yadav, P. Singh, and B. R. Vishvakarma, "Analysis of W-slot loaded patch antenna for dualband operation," AEU International Journal of Electronics and Communication, Vol. 66, 32-38, 2012.
doi:10.1016/j.aeue.2011.04.011

25., www.ntia.doc.gov/files/ntia/publications/compendium.

26. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., A John Wiley & Sons, INC Publication, 2003.

27. Chu, L. J., "Physical limitations of omni-directional antennas," Journal of Applied Physics, Vol. 19, 1163-1175, 1948.
doi:10.1063/1.1715038

28. Gan, B., L. Zhou, Y. Zhang, and J. Mao, "A dual-band microstrip antenna using a circular ring and a concentric disk," Int. J. RF Microw. Comput. Aided Eng., Vol. 26, 268-276, 2016.
doi:10.1002/mmce.20963


© Copyright 2010 EMW Publishing. All Rights Reserved