Vol. 96
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-22
Analysis of the Noise Components for Affecting the Imaging Performance of the Synthetic Aperture Interferometric Radiometer (SAIR)
By
Progress In Electromagnetics Research M, Vol. 96, 139-146, 2020
Abstract
Microwave radiometer is a high-sensitivity ``camera'', which realizes high-resolution imaging by receiving the natural radiation signal in microwave band from the observation scene. Due to the imperfection of the system hardware, the measured data include not only the radiated signal of interest but also the noise generated by the system hardware itself. These unexpected noises will affect the imaging performance of the system, especially for the synthetic aperture interferometric radiometer (SAIR). In this paper, the noise behavior of the SAIR system is analyzed and modeled for the first time. Based on the noise behavior model, a method is proposed to pick the optimal averaging time for imaging with high fidelity in the SAIR system. Some experiments are carried out to verify the correctness of the noise behavior model and the optimal averaging time picking method for SAIR. With the noise behavior model and the optimal averaging time picking method, it can provide an effective guide for the SAIR system design, error correction, and reconstruction.
Citation
Jinguo Wang, Zhaozhao Gao, Jie Gu, Shiwen Li, Xiaoyun Zhang, Zitong Dong, Zilong Zhao, Fan Jiang, Bo Qi, and Wei Zhao, "Analysis of the Noise Components for Affecting the Imaging Performance of the Synthetic Aperture Interferometric Radiometer (SAIR)," Progress In Electromagnetics Research M, Vol. 96, 139-146, 2020.
doi:10.2528/PIERM20040805
References

1. Ulaby, F., R. Moore, and A. Fung, "Microwave remote sensing active and passive: Microwave remote sensing fundamentals and radiometry," Addison Wesley Publishing Company, 1-456, 1981.

2. Carmona, A. J., "Application of interferometric radiometry to earth observation,", Univ. Politècnica Catalunya, Barcelona, Spain, 1997.

3. Mann, C., "A compact real time passive terahertz imager," Proceedings of SPIE, Vol. 6211, 1-5, 2006.

4. Luukanen, A., L. Gronberg, M. Gronholm, P. Lappalainen, M. Leivo, A. Rautiainen, A. Tamminen, J. Ala-Laurinaho, C. Dietlein, and E. Grossman, "Real-time passive terahertz imaging system for standoff concealed weapons imaging," Proceedings of SPIE, Vol. 7670, 1-8, 2010.

5. May, T., G. Zieger, S. Anders, V. Zakosarenko, M. Starkloff, H. G. Meyer, G. Thorwirth, and E. Kreysa, "Passive stand-off terahertz imaging with 1 hertz frame rate," Proceedings of SPIE, Vol. 6949, 1-8, 2008.

6. Su, K., Z. Liu, R. B. Barat, D. E. Gary, Z. Michalopoulou, and J. F. Federici, "Two dimensional interferometric and synthetic aperture imaging with a hybrid terahertz/millimeter wave system," Applied Optics, Vol. 49, No. 19, 13-19, 2010.
doi:10.1364/AO.49.000E13

7. Corbella, I., F. Torres, A. Camps, A. Colliander, M. Martín-Neira, S. Ribó, K. Rautiainen, N. Duffo, and M. Vall-llossera, "MIRAS end-to-end calibration: Application to SMOS L1 processor," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 5, 1126-1134, 2005.
doi:10.1109/TGRS.2004.840458

8. McMullan, K. D., M. A. Brown, M. Martin-Neira, W. Rits, S. Ekholm, J. Matri, and J. Lemanczyk, "SMOS: The payload," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 3, 594-605, 2008.
doi:10.1109/TGRS.2007.914809

9. Gaier, T., P. Kangaslahti, B. Lambrigtsen, I. Ramos-Perez, A. Tanner, D. McKague, C. Ruf, M. Flynn, Z. Zhang, R. Backhus, and D. Austerberry, "A 180 GHz prototype for a geostationary microwave imager/sounder-GeoSTAR-III," 2016 IEEE International Geoscience and Remote Sensing Symposium, 2021-2023, 2016.
doi:10.1109/IGARSS.2016.7729521

10. Land, D. V., A. P. Levick, and J. W. Hand, "The use of the Allen deviation for the measurement of the noise and drift performance of microwave radiometers," Measurement Science and Technology, Vol. 18, No. 7, 1917-1928, 2007.
doi:10.1088/0957-0233/18/7/018

11. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "Regularization imaging algorithm with accurate G matrix for near-field MMW synthetic aperture imaging radiometer," Progress In Electromagnetics Research B, Vol. 58, 193-203, 2014.
doi:10.2528/PIERB14011602

12. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near-field," Progress In Electromagnetics Research, Vol. 141, 517-535, 2013.
doi:10.2528/PIER13060702

13. Wells, J., W. Daywitt, and C. Miller, "Measurement of effective temperatures of microwave noise sources," IEEE Transactions on Instrumentation Measurement, Vol. 13, No. 1, 17-28, 1964.
doi:10.1109/TIM.1964.4313364

14. Ziel, A., Noise in Measurements, Chapter 7, Wiley, New York, 1976.

15. Cowley, A. M. and H. O. Sorensen, "Quantitative comparison of solid-state microwave detectors," IEEE Transactions on Microwave Theory and Techniques, Vol. 14, No. 12, 588-602, 1967.
doi:10.1109/TMTT.1966.1126337

16. Barnes, J., A. Chi, L. Cutler, D. Healey, D. Leeson, T. McGunigal, Jr. Mullen, W. Smith, R. Sydnor, R. Vessot, and G. Winkler, "Characterization of frequency stability," IEEE Transactions on Instrumentation Measurement, Vol. 20, No. 2, 105-120, 1971.
doi:10.1109/TIM.1971.5570702

17. Allan, D., "Should the classical variance be used as a basic measure in standards metrology?," IEEE Transactions on Instrumentation Measurement, Vol. 36, No. 2, 646-654, 1987.
doi:10.1109/TIM.1987.6312761