Vol. 96
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-05
Design of Circular Polarized Antenna Using Gammadion Chiral Metamaterial as Linear-to-Circular Polarization Transformer
By
Progress In Electromagnetics Research M, Vol. 96, 69-78, 2020
Abstract
In this paper, the application of gammadion chiral metamaterial for converting linearly polarized waves to circularly polarized waves is presented and using this a circular polarized antenna for wireless application is proposed. First of all, a traditional rectangular microstrip patch antenna has been designed at resonance frequency of 5.15 GHz, which gives linear polarization. The linearly polarized waves are allowed to feed gammadion chiral metamaterial, which is placed at a height of 33 mm above the reference antenna. The gammadion chiral metamaterial produces two special effects that are responsible for polarization rotation: circular dichroism and optical activity. As a result of these effects, the necessary conditions for circularly polarized radiation are fulfilled, and antenna is converted to the circularly polarized antenna. This method gets rid of designing of complicated feeding structure that is necessary for circular polarization. The role of gammadion chiral metamaterial to convert linear polarization to circular polarization has been described. The antenna is fabricated, and the measurement of return loss, axial ratio, etc. is also carried out. Simulation and measurement results agree with each other.
Citation
Preet Kaur, and Pravin R. Prajapati, "Design of Circular Polarized Antenna Using Gammadion Chiral Metamaterial as Linear-to-Circular Polarization Transformer," Progress In Electromagnetics Research M, Vol. 96, 69-78, 2020.
doi:10.2528/PIERM20061806
References

1. Gao, S., Q. Luo, and F. Zhu, Circular Polarized Antenna, Wiley Publication, UK, 2014.
doi:10.1002/9781118790526

2. Caso, R., A. Michel, M. Rodriguez-Pino, and P. Nepa, "Dual-band UHF-RFID/WLAN circularly polarized antenna for portable RFID readers," IEEE Trans. on Antennas and Propag., Vol. 62, 2822-2826, 2014.
doi:10.1109/TAP.2014.2303971

3. Yu, D., S. Gong, Y. Wan, and W. Chen, "Omnidirectional dual-band dual circularly polarized microstrip antenna using TM01 and TM02 modes," IEEE Antennas and Wireless Propag. Lett., Vol. 13, 1104-1107, 2014.
doi:10.1109/LAWP.2014.2328020

4. Oraizi, H. and S. Hedayati, "Miniaturization of microstrip antennas by the novel application of the giuseppe peano fractal geometries," IEEE Trans. on Antennas and Propag., Vol. 60, 3559-3567, 2012.
doi:10.1109/TAP.2012.2201070

5. Wu, J. and K. Sarabandi, "Compact omnidirectional circularly polarized antenna," IEEE Trans. on Antennas and Propag., Vol. 65, 1550-1557, 2017.
doi:10.1109/TAP.2017.2669959

6. Zheng, G. and B. Sun, "High gain normal mode omnidirectional circularly polarized antenna," IEEE Antennas and Wireless Propag. Lett., Vol. 17, 1104-1108, 2018.
doi:10.1109/LAWP.2018.2834477

7. Fartookzadeh, M. and S. H. Mohseni Armaki, "Circular feeding network for circular polarisation reconfigurable antennas," Electron. Lett., Vol. 55, 677-679, 2019.
doi:10.1049/el.2019.0920

8. Lin, Y. F., H. M. Chen, C. H. Chen, and C. H. Lee, "Compact shorted inverted L antenna with circular polarisation for RFID handheld reader," Electro. Lett., Vol. 49, 442-449, 2013.
doi:10.1049/el.2012.4296

9. Liu, Q., Y. Liu, Y. Wu, M. Su, and J. Shen, "Compact wideband circularly polarized patch antenna for CNSS applications," IEEE Antennas and Wireless Propag. Lett., Vol. 12, 1280-1283, 2013.
doi:10.1109/LAWP.2013.2283218

10. Lai, H. W., K. M. Mak, and K. F. Chan, "Novel aperture-coupled microstrip-line feed for circularly polarized patch antenna," Progress In Electromagnetics Research, Vol. 144, 1-9, 2014.
doi:10.2528/PIER13101803

11. Bakir, M., M. Karaaslan, O. Akgol, and C. Sabah, "Multifunctional metamaterial sensor applications based on chiral nihility," Opt. Quant. Electron., Vol. 49, 346-363, 2017.
doi:10.1007/s11082-017-1183-4

12. Fan, J. and Y. Cheng, "Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave," J. Phys. D: Appl. Phys., Vol. 53, 2020.

13. Cheng, Y., J. Fan, H. Luo, and F. Chen, "Dual band and high-efficiency circular polarization convertor based on anisotropic metamaterial," IEEE Access, Vol. 8, 7615-7621, 2020.
doi:10.1109/ACCESS.2019.2962299

14. Cheng, Y., H. Luo, F. Chen, X. Mao, and R. Gong, "Photo-excited switchable broadband linear polarization conversion via asymmetric transmission with complementary chiral metamaterial for terahertz waves," OSA Continuum, Vol. 2, 2391-2400, 2019.
doi:10.1364/OSAC.2.002391

15. Cheng, Y., Y. Nie, L. Wu, and R. Z. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 421-432, 2013.
doi:10.2528/PIER13011202

16. Hu, Y., Y. Wang, L. Liang, Y. He, W. Chen, and Z. Yan, "Study on circularly polarized patch antenna with asymmetric chiral metamaterial," IEEE Antennas and Wireless Propag. Lett., Vol. 17, 907-910, 2018.
doi:10.1109/LAWP.2018.2822820

17. Akgol, O., E. Unal, O. Altintas, M. Karaaslan, F. Karadag, and C. Sabah, "Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal," Optik, Vol. 161, 12-19, 2018.
doi:10.1016/j.ijleo.2018.02.028

18. Fang, F., Y. Cheng, and H. Liao, "Giant optical activity and circular dichroism in the terahertz region based on bi-layer Y-shaped chiral metamaterial," Optik — Int. J. Light Electron. Opt., Vol. 125, 6067-6070, 2014.
doi:10.1016/j.ijleo.2014.07.074

19. Cheng, Y., W. Li, and X. Mao, "Triple-band polarization angle independent 90 polarization rotator based on fermat’s spiral structure planar chiral metamaterial," Progress In Electromagnetics Research, Vol. 165, 35-45, 2019.
doi:10.2528/PIER18112603

20. Li, Z., M. Mutlu, and E. Ozbay, "Chiral metamaterials: From optical activity and negative refractive index to asymmetric transmission," J. of Optics, Vol. 15, No. 2, 2013.
doi:10.1088/2040-8978/15/2/023001

21. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-239, 2013.
doi:10.2528/PIER13050601

22. Hu, Y. W., Y. Wang, Z. M. Yan, and H. C. Zhou, "A high-gain circularly polarized Fabry-Perot antenna with chiral metamaterial-based circular polarizer," Microw. and Optical Technol. Lett., 1-6, 2019.

23. Cheng, Z. and Y. Cheng, "A multi-functional polarization convertor based on chiral metamaterial for terahertz waves," Optics Communications, Vol. 435, 178-182, 2019.
doi:10.1016/j.optcom.2018.11.038

24. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, 121104–4, 2009.

25. Zarifi, D., M. Soleimani, V. Nayyeri, and J. Rashed-Mohassel, "On the miniaturization of semiplanar chiral metamaterial structures," IEEE Trans. on Antennas and Propag., Vol. 60, No. 12, 5768-5776, 2012.
doi:10.1109/TAP.2012.2214015