Vol. 96
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-15
Hybrid Antenna Array for 4G/5G Smartphone Applications
By
Progress In Electromagnetics Research M, Vol. 96, 109-118, 2020
Abstract
In this paper, a hybrid antenna array for 4G/5G smartphone applications is presented. The hybrid antenna system is composed of one array of two antenna elements for 4G application and another array of six antenna elements for 5G application. By loading PIN diodes and changing the on/off state of the PIN switch, then the resonance point will shift. The 2-antenna array broadens the bandwidth of 4G frequency band and is capable of covering GSM850/900/DCS1800/PCS1900/UMTS2100 and LTE2300/2500 operating bands. A U-shape monopole strip and an S-shape slot coupling technologies are also introduced, the 6-antenna array improves the impedance matching for the proposed 5G antenna array, and is capable of covering the 5G (3300 3600 MHz and 4800 5000 MHz), which can meet the demand of 5G application. Spatial and polarization diversity techniques are implemented on these antenna elements so that high isolation can be achieved. This hybrid antenna array is fabricated, and typically experimental results such as S11, isolation, radiation pattern, efficiency, and channel capacity are presented. The measured results are in good agreement with the simulated ones.
Citation
Ming Yang, Yufa Sun, and Jinzhi Zhou, "Hybrid Antenna Array for 4G/5G Smartphone Applications," Progress In Electromagnetics Research M, Vol. 96, 109-118, 2020.
doi:10.2528/PIERM20071202
References

1. Bang, J. and J. Choi, "A SAR reduced mm-wave beam-steerable array antenna with dual-mode operation for fully metal-covered 5G cellular handsets," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 6, 1118-1122, Jun. 2018.
doi:10.1109/LAWP.2018.2836196

2. Sharawi, M. S., M. Ikram, and A. Shamim, "A two concentric slot loop based connected array MIMO antenna system for 4G/5G terminals," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6679-6686, Dec. 2017.
doi:10.1109/TAP.2017.2671028

3. Guo, J. L., L. Cui, C. Li, et al. "Side-edge frame printed eight-port dual-band antenna array for 5G smartphone applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7412-7417, Dec. 2018.
doi:10.1109/TAP.2018.2872130

4. Choi, J., W. Hwang, C. You, et al. "Four-element reconfigurable coupled loop MIMO antenna featuring LTE full-band operation for metallic-rimmed smartphone," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 99-107, Jan. 2019.
doi:10.1109/TAP.2018.2877299

5. Li, M. Y., Y. L. Ban, Z. Q. Xu, et al. "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 5, 6160-6170, 2017.

6. Li, Y. X., C. Y. D. Sim, Y. Luo, et al. "Multi-band 10-antenna array for sub-6 GHz MIMO applications in 5G smartphones," IEEE Access, Vol. 6, 28014-28053, 2018.

7. Sun, L. B., Y. Li, Z. J. Zhang, and Z. H. Feng, "Wideband 5G MIMO antenna with integrated orthogonal-mode dual-antenna pairs for metal-rimmed smartphones," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2494-2503, Apr. 2020.
doi:10.1109/TAP.2019.2948707

8. Rahmi, B. I. R. and K. L. Wong, "Integrated inverted-F and open-slot antennas in the metal-framed smartphone for 2 × 2 LTE LB and 4 × 4 LTE M/HB MIMO operations," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5004-5012, Oct. 2018.

9. Wang, S. and Z. W. Du, "Decoupled dual-antenna system using crossed neutralization lines for LTE/WWAN smartphone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 523-526, 2015.
doi:10.1109/LAWP.2014.2371020

10. Dong, J., X. Yu, and L. Deng, "A decoupled multiband dual-antenna system for WWAN/LTE smartphone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1528-1532, 2017.
doi:10.1109/LAWP.2017.2647807

11. Wang, S. and Z. W. Du, "A dual-antenna system for LTE/WWAN/WLAN/WiMAX smartphone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1443-1446, 2015.
doi:10.1109/LAWP.2015.2411253

12. Ban, Y. L., Z. X. Chen, Z. Chen, et al. "Decoupled closely spaced heptaband antenna array for WWAN/LTE smartphone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 31-34, 2014.

13. Wong, K. L., C. Y. Tsai, and J. Y. Lu, "Two asymmetrically mirrored gap-coupled loop antennas as a compact building block for eight-antenna MIMO array in the future smartphone," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 1765-1778, 2017.
doi:10.1109/TAP.2017.2670534

14. Li, M. Y., Y. L. Ban, Z. Q. Xu, et al. "Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 9, 3820-3830, Sep. 2016.
doi:10.1109/TAP.2016.2583501

15. Li, M. Y., Z. Q. Xu, Y. L. Ban, et al. "Eight-port orthogonally dual-polarised MIMO antennas using loop structures for 5G smartphone," IET Microwaves Antennas and Propagation, Vol. 11, No. 12, 1810-1816, 2017.
doi:10.1049/iet-map.2017.0230

16. Wong, K. L. and J. Y. Lu, "3.6-GHz 10-antenna array for MIMO operation in the smartphone," Microwave and Optical Technology Letters, Vol. 57, No. 7, 1699-1704, 2015.
doi:10.1002/mop.29181

17. Jiang, W., B. Liu, Y. Q. Cui, and W. Hu, "High-isolation eight-element MIMO array for 5G smartphone applications," IEEE Access, Vol. 7, 34104-34112, 2019.
doi:10.1109/ACCESS.2019.2904647

18. Yuan, X. T., W. He, K. D. Hong, et al. "Ultra-wideband MIMO antenna system with high element-isolation for 5G smartphone application," IEEE Access, Vol. 8, 56281-56289, 2020.
doi:10.1109/ACCESS.2020.2982036

19. Ban, Y. L., Y. F. Qiang, G. Wu, et al. "Reconfigurable narrow-frame antenna for LTE/WWAN metal-rimmed smartphone applications," IET Microwaves Antennas and Propagation, Vol. 10, No. 10, 1092-1100, 2016.
doi:10.1049/iet-map.2015.0610