Vol. 99

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-12-10

Bandpass Frequency Selective Surface Based on Square Waveguide Structure Using 3D Printing Technology

By Zhengyong Yu and Cheng Wang
Progress In Electromagnetics Research M, Vol. 99, 165-175, 2021
doi:10.2528/PIERM20080803

Abstract

In this paper, a novel three-dimensional (3D) bandpass frequency selective surface (FSS) is presented based on a square waveguide structure using 3D printing technology. The proposed 3D FSS is composed of a periodic array of the square waveguides with dumbbell slots embedded in waveguide walls. The square waveguide of the unit cell provides a propagation path, which can excite two resonant modes, leading to a bandpass response with one transmission pole and one transmission zero below the cutoff frequency of the square waveguide. To explain the operating principle of the proposed 3D FSS, the electric field distributions at the frequencies of transmission pole/zero are analyzed, and an equivalent circuit model is also established. For validation, a practical example is manufactured simply and rapidly, by using 3D printing technology. To verify the performance of the proposed 3D FSS, the frequency selective characteristics of the implemented 3D FSS for both TE and TM polarizations under different incident angles are measured. The measurement results show that the proposed structure exhibits dual polarizations and provides good frequency stability under incident angles from 0° to 40°.

Citation


Zhengyong Yu and Cheng Wang, "Bandpass Frequency Selective Surface Based on Square Waveguide Structure Using 3D Printing Technology," Progress In Electromagnetics Research M, Vol. 99, 165-175, 2021.
doi:10.2528/PIERM20080803
http://www.jpier.org/PIERM/pier.php?paper=20080803

References


    1. Munk, B. A., Frequency Selective Surface: Theory and Design, Wiley, New York, NY, USA, 2000.
    doi:10.1002/0471723770

    2. Chen, H., X. Hou, and L. Deng, "Design of frequency selective surfaces radome for a planar slotted waveguide antenna," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1231-1233, 2009.
    doi:10.1109/LAWP.2009.2035646

    3. Song, X., Z. Yan, T. Zhang, C. Yang, and R. Lian, "Triband frequency selective surface as subreflector in Ku-, K-, and Ka-bands," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1869-1872, 2016.
    doi:10.1109/LAWP.2016.2542185

    4. Sivasamy, R., M. Kanagasabai, S. Baisakhiya, R. Natarajan, J. K. Pakkathillam, and S. K. Palaniswamy, "A novel shield for GSM 1800 MHz band using frequency selective surface," Progress In Electromagnetics Research Letters, Vol. 38, 193-199, 2013.
    doi:10.2528/PIERL13022206

    5. Zhang, K. Z., W. Jiang, J. Y. Ren, and S. X. Gong, "An annular-ring miniaturized stopband frequency selective surface with ultra-large angle of incidence," Progress In Electromagnetics Research M, Vol. 65, 19-27, 2018.
    doi:10.2528/PIERM18011014

    6. Wu, R., H. Zhang, Z. M. Yang, T. Zhong, and Y. F. Lin, "Compact stable frequency selective surface using novel Y-type element," Progress In Electromagnetics Research Letters, Vol. 57, 85-90, 2015.
    doi:10.2528/PIERL15050705

    7. Shaik, V. and K. Shambavi, "Design of dodecagon unit cell shape based three layered frequency selective surfaces for X band reflection," Progress In Electromagnetics Research M, Vol. 75, 103-111, 2018.
    doi:10.2528/PIERM18070207

    8. Xue, J. Y., S. X. Gong, P. F. Zhang, W. Wang, and F. F. Zhang, "A new miniaturized fractal frequency selective surface with excellent angular stability," Progress In Electromagnetics Research Letters, Vol. 13, 131-138, 2010.
    doi:10.2528/PIERL10010804

    9. Wang, H., M. Yan, S. Qu, L. Zheng, and J. Wang, "Design of a self-complementary frequency selective surface with multi-band polarization separation characteristic," IEEE Access, Vol. 7, 36788-36799, 2019.
    doi:10.1109/ACCESS.2019.2905416

    10. Rashid, A. K. and Z. Shen, "A novel band-reject frequency selective surface with pseudo-elliptic response," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1220-1226, 2010.
    doi:10.1109/TAP.2010.2041167

    11. Li, B. and Z. Shen, "Three-dimensional bandpass frequency-selective structures with multiple transmission zeros," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 10, 3578-3589, 2013.
    doi:10.1109/TMTT.2013.2279776

    12. Li, B. and Z. Shen, "Dual-band bandpass frequency-selective structures with arbitrary band ratios," IEEE Trans. Antennas Propag., Vol. 62, No. 11, 5504-5512, 2014.
    doi:10.1109/TAP.2014.2349526

    13. Al-Sheikh, A. and Z. Shen, "Design of wideband bandstop frequency selective structures using stacked parallel strip line arrays," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3401-3409, 2016.
    doi:10.1109/TAP.2016.2570247

    14. Tao, K., B. Li, Y. Tang, M. Zhang, and Y. Bo, "Analysis and implementation of 3D bandpass frequency selective structure with high frequency selectivity," Electron. Lett., Vol. 53, No. 22, 324-326, 2017.
    doi:10.1049/el.2016.4469

    15. Omar, A. A. and Z. Shen, "Double-sided parallel-strip line resonator for dual-polarized 3-D frequency-selective structure and absorber," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 10, 3744-3752, 2017.
    doi:10.1109/TMTT.2017.2700301

    16. Omar, A. A. and Z. Shen, "Thin bandstop frequency-selective structures based on loop resonator," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 7, 2298-2309, 2017.
    doi:10.1109/TMTT.2017.2651812

    17. Li, B., X. Huang, L. Zhu, Y. X. Zhang, Y. M. Tang, W. J. Lu, and Y. M. Bo, "Bandpass frequency selective structure with improved out-of-band rejection using stacked single-layer slotlines," IEEE Trans. Antennas Propag., Vol. 66, No. 11, 6003-6014, 2018.
    doi:10.1109/TAP.2018.2866529

    18. Rashid, A. K., Z. Shen, and B. Li, "An elliptical bandpass frequency selective structure based on microstrip lines," IEEE Trans. Antennas Propag., Vol. 60, No. 10, 4661-4669, 2012.
    doi:10.1109/TAP.2012.2207355

    19. Pelletti, C., G. Bianconi, R. Mittra, and Z. Shen, "Frequency selective surface with wideband quasi-elliptic bandpass response," Electron. Lett., Vol. 49, No. 17, 1052-1053, 2013.
    doi:10.1049/el.2013.2007

    20. Ferreira, D., I. Cuiñas, R. F. S. Caldeirinha, and T. R. Fernandes, "3-D mechanically tunable square slot FSS," IEEE Trans. Antennas Propag., Vol. 65, No. 1, 242-250, 2017.
    doi:10.1109/TAP.2016.2631131

    21. Zhang, B. and H. Zirath, "Metallic 3-D printed rectangular waveguides for millimeter-wave applications," IEEE Trans. Compon. Packag. Manuf. Technol., Vol. 6, No. 5, 796-804, 2016.
    doi:10.1109/TCPMT.2016.2550483

    22. Nayeri, P., et al., "3D printed dielectric reflectarrays: Low-cost high-gain antennas at sub-millimeter waves," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 2000-2008, 2014.
    doi:10.1109/TAP.2014.2303195

    23. Wu, T. K., Ed., Frequency Selective Surface and Grid Array, Wiley, New York, NY, USA, 1995.

    24. Craven, G. F. and C. K. Mok, "The design of evanescent mode waveguide bandpass filters for a prescribed insertion loss characteristic," IEEE Trans. Microw. Theory Tech., Vol. 19, No. 3, 295-308, 1971.
    doi:10.1109/TMTT.1971.1127503

    25. Dong, Y. D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2211-2223, 2009.
    doi:10.1109/TMTT.2009.2027156

    26. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1239-1245, 2007.
    doi:10.1109/TAP.2007.895567

    27. Lee, C. K. and R. J. Langley, "Equivalent-circuit models for frequency selective surfaces at oblique angles of incidence," IEE Proc. H - Microw., Antennas Propag., Vol. 132, No. 6, 395-399, 1985.
    doi:10.1049/ip-h-2.1985.0070

    28. Pozar, D. M., Microwave Engineering, Wiley, Hoboken, NJ, USA, 2009.