Vol. 97
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-10-22
The Influence of Different Structure of Magnetic Modulation Ring on the Torque Performance of Coaxial Magnetic Gear
By
Progress In Electromagnetics Research M, Vol. 97, 215-227, 2020
Abstract
In coaxial magnetic gear (CMG), magnetic modul ation ring is composed of a modulator and a connecting bridge. The torque performance of the magnetic gear are affected by the different structures of the magnetic modulation ring. In this paper, fifteen different kinds of magnetic modulation rings with different structures are proposed; they consist of three different shapes of modulators and five different locations of connection bridges. By using the two-dimensional finite element method (FEM), the magnetic flux density, magnetic line distribution, static torque, and steady-state torque of the CMG with different structures of magnetic modulation ring are analyzed. The results show that the innermost bridge has the least effect on the torque and torque ripple of the CMG, while the outermost bridge has the opposite effect. The torque capacity of the circular modulator and arc modulator is higher than that of the square modulator, and the circular modulator helps to reduce the inner torque ripple, while the square modulator helps to reduce the outer torque ripple. This paper can provide some references for the design of the magnetic modulation ring.
Citation
Jungang Wang, Shuairui Xu, Aiguo Ouyang, and Ruina Mo, "The Influence of Different Structure of Magnetic Modulation Ring on the Torque Performance of Coaxial Magnetic Gear," Progress In Electromagnetics Research M, Vol. 97, 215-227, 2020.
doi:10.2528/PIERM20082703
References

1. Atallah, K., S. D. Calverley, and D. Howe, "Design, analysis and realisation of a high-performance magnetic gear," IEE Proceedings — Electric Power Applications, Vol. 151, No. 2, 135, 2004.
doi:10.1049/ip-epa:20040224

2. Tsurumoto, K. and S. Kikuchi, "A new magnetic gear using permanent magnet," IEEE T. Magn., Vol. 23, No. 5, 3622-3624, 1987.
doi:10.1109/TMAG.1987.1065208

3. Yao, Y. D., D. R. Huang, S. M. Lin, and S. J. Wang, "Theoretical computations of the magnetic coupling between magnetic gears," IEEE T. Magn., Vol. 32, No. 3, 710-713, 1996.
doi:10.1109/20.497338

4. Filippini, M. and P. Alotto, "Coaxial magnetic gear design and optimization," IEEE T. Ind. Electron., Vol. 64, No. 12, 9934-9942, 2017.
doi:10.1109/TIE.2017.2721918

5. Tsai, M. and C. Huang, "Development of a variable-inertia device with a magnetic planetary gearbox," IEEE/ASME Transactions on Mechatronics, Vol. 16, No. 6, 1120-1128, 2011.
doi:10.1109/TMECH.2010.2077679

6. Gerber, S. and R. Wang, "Design and evaluation of a magnetically geared PM machine," IEEE T. Magn., Vol. 51, No. 8, 1-10, 2015.
doi:10.1109/TMAG.2015.2421474

7. Zhu, X., L. Chen, L. Quan, Y. Sun, W. Hua, and Z. Wang, "A new magnetic-planetary-geared permanent magnet brushless machine for hybrid electric vehicle," IEEE T. Magn., Vol. 48, No. 11, 4642-4645, 2012.
doi:10.1109/TMAG.2012.2202276

8. Jing, L., T. Zhang, Y. Gao, R. Qu, Y. Huang, and T. Ben, "A novel HTS modulated coaxial magnetic gear with eccentric structure and halbach arrays," IEEE T. Appl. Supercon., Vol. 29, No. 5, 1-5, 2019.
doi:10.1109/TASC.2019.2892152

9. Rasmussen, P. O., T. O. Andersen, F. T. Jorgensen, and O. Nielsen, "Development of a high-performance magnetic gear," IEEE T. Ind. Appl., Vol. 41, No. 3, 764-770, 2005.
doi:10.1109/TIA.2005.847319

10. Uppalapati, K. K., M. D. Calvin, J. D. Wright, J. Pitchard, W. B. Williams, and J. Z. Bird, "A magnetic gearbox with an active region torque density of 239N·m/L," IEEE T. Ind. Appl., Vol. 54, No. 2, 1331-1338, 2018.
doi:10.1109/TIA.2017.2779418

11. Dragan, R. S., R. E. Clark, E. K. Hussain, K. Atallah, and M. Odavic, "Magnetically geared pseudo direct drive for safety critical applications," IEEE T. Ind. Appl., Vol. 55, No. 2, 1239-1249, 2019.
doi:10.1109/TIA.2018.2873511

12. Iwasaki, N., M. Kitamura, and Y. Enomoto, "Optimal design of permanent magnet motor with magnetic gear and prototype verification," Electr. Eng. Jpn., Vol. 194, No. 1, 60-69, 2016.
doi:10.1002/eej.22770

13. Peng, S., W. N. Fu, and S. L. Ho, "A novel high torque-density triple-permanent-magnet-excited magnetic gear," IEEE T. Magn., Vol. 50, No. 11, 1-4, 2014.

14. Wang, R. and S. Gerber, "Magnetically geared wind generator technologies: Opportunities and challenges," Appl. Energ., Vol. 136, 817-826, 2014.
doi:10.1016/j.apenergy.2014.07.079

15. Zhu, X., L. Chen, L. Quan, Y. Sun, W. Hua, and Z. Wang, "A new magnetic-planetary-geared permanent magnet brushless machine for hybrid electric vehicle," IEEE T. Magn., Vol. 48, No. 11, 4642-4645, 2012.
doi:10.1109/TMAG.2012.2202276

16. Liu, X., Y. Zhao, Z. Chen, D. Luo, and S. Huang, "Multi-objective robust optimization for a dual-flux-modulator coaxial magnetic gear," IEEE T. Magn., Vol. 55, No. 7, 1-8, 2019.

17. Wang, Y., M. Filippini, N. Bianchi, and P. Alotto, "A review on magnetic gears: Topologies, computational models, and design aspects," IEEE T. Ind. Appl., Vol. 55, No. 5, 4557-4566, 2019.
doi:10.1109/TIA.2019.2916765

18. Li, X., M. Cheng, and Y. Wang, "Analysis, design and experimental verification of a coaxial magnetic gear using stationary permanent-magnet ring," IET Electr. Power App., Vol. 12, No. 2, 231-238, 2018.
doi:10.1049/iet-epa.2017.0382

19. Kim, S. J., E. Park, S. Jung, and Y. Kim, "Transfer torque performance comparison in coaxial magnetic gears with different flux-modulator shapes," IEEE T. Magn., Vol. 53, No. 6, 1-4, 2017.

20. Abdelhamid, D. Z. and A. M. Knight, "The effect of modulating ring design on magnetic gear torque," IEEE T. Magn., Vol. 53, No. 11, 1-4, 2017.
doi:10.1109/TMAG.2017.2716920

21. Zhang, X., X. Liu, and Z. Chen, "A novel dual-flux-modulator coaxial magnetic gear for high torque capability," IEEE T. Energy Conver., Vol. 33, No. 2, 682-691, 2018.
doi:10.1109/TEC.2017.2778285

22. Jian, L., Z. Deng, Y. Shi, J. Wei, and C. C. Chan, "The mechanism how coaxial magnetic gear transmits magnetic torques between its two rotors: Detailed analysis of torque distribution on modulating ring," IEEE/ASME Transactions on Mechatronics, Vol. 24, No. 2, 763-773, 2019.
doi:10.1109/TMECH.2019.2893183

23. Amrhein, M. and P. T. Krein, "Force calculation in 3-D magnetic equivalent circuit networks with a Maxwell stress tensor," IEEE T. Energy Conver., Vol. 24, No. 3, 587-593, 2009.
doi:10.1109/TEC.2009.2016142