Vol. 99

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-12-04

Multiband Below-Cutoff Propagation in Rectangular Waveguides Filled with Multilayer Left-/Right-Handed Metamaterials

By Qianru Weng, Qian Lin, and Hai-Feng Wu
Progress In Electromagnetics Research M, Vol. 99, 115-127, 2021
doi:10.2528/PIERM20110303

Abstract

An accurate rigorous modal theory has been applied to investigate the propagation characteristics in a rectangular waveguide filled with multilayer left-handed and right-handed metamaterials. It is shown that such a waveguide supports different passbands below the waveguide's cutoff frequency, and the number of passbands is related to the corresponding layers of different left-handed metamaterials (LHMs) filled in the waveguide. The rigorous modal analysis of this structure reveals in detail how the waveguide geometry and left-handed metamaterial parameters may be selected to design rectangular waveguides supporting double or triple below-cutoff passbands. The efficient power transmissions in these below-cutoff passbands are validated by using the full-wave simulation software HFSS. These structures supporting multiple below-cutoff passbands could find applications in waveguide components requiring miniaturization and multiband properties, such as miniaturized multifunctional antennas and filters.

Citation


Qianru Weng, Qian Lin, and Hai-Feng Wu, "Multiband Below-Cutoff Propagation in Rectangular Waveguides Filled with Multilayer Left-/Right-Handed Metamaterials," Progress In Electromagnetics Research M, Vol. 99, 115-127, 2021.
doi:10.2528/PIERM20110303
http://www.jpier.org/PIERM/pier.php?paper=20110303

References


    1. Wikström, G., et al., "Challenges and technologies for 6G," 2020 2nd 6G Wireless Summit (6G SUMMIT), 1-5, Levi, Finland, 2020.

    2. Kehn, M. N. M. and P. S. Kildal, "Miniaturized rectangular hard waveguides for use in multifrequency phased arrays," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 100-109, 2005.
    doi:10.1109/TAP.2004.840519

    3. Bozzi, M., A. Georgiadis, and K. Wu, "Review of substrate-integrated waveguide circuits and antennas," IET Microwaves, Antennas & Propagation, Vol. 5, No. 8, 909-920, 2011.
    doi:10.1049/iet-map.2010.0463

    4. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    5. Hrabar, S., J. Bartolic, and Z. Sipus, "Waveguide miniaturization using uniaxial negative permeability metamaterial," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 110-119, 2005.
    doi:10.1109/TAP.2004.840503

    6. Siakavara, K., "Modal analysis of the microwave frequency response and composite right-/left-handed operation of a rectangular waveguide loaded with double positive and double negative materials," Int. J. RF Microwave Comput. Aided Eng., Vol. 1, 435-445, 2010.

    7. Raveu, N., B. Byrne, L. Claudepierre, and N. Capet, "Modal theory for waveguides with anisotropic surface impedance boundaries," IEEE Trans. Microw. Theory Techn., Vol. 64, 1153-62, 2016.
    doi:10.1109/TMTT.2016.2533387

    8. Kuhler, L., G. Le Fur, L. Duchesne, and N. Raveu, "The propagation characteristics of 2-D metamaterial waveguides using the modal expansion theory," IEEE Trans. Microw. Theory Techn., Vol. 66, 4319-26, 2018.
    doi:10.1109/TMTT.2018.2859944

    9. Kim, D. J. and J. H. Lee, "Beam scanning leaky-wave slot antenna using balanced CRLH waveguide operating above the cutoff frequency," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2432-2440, 2013.
    doi:10.1109/TAP.2013.2237740

    10. Jin, J. Y., X. Q. Lin, and Q. Xue, "A miniaturized evanescent mode waveguide filter using RRRs," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 7, 1989-1996, 2016.
    doi:10.1109/TMTT.2016.2574988

    11. Kehn, M. N. M., et al., "Analysis of dispersion in dipole-FSS loaded hard rectangular waveguide," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, 2275-2282, 2006.
    doi:10.1109/TAP.2006.879198

    12. Rajo-Iglesias, E., Ó. Quevedo-Teruel, and M. N. M. Kehn, "Multiband SRR loaded rectangular waveguide," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1571-1575, 2009.
    doi:10.1109/TAP.2009.2016799

    13. Ibili, H., S. Keleş, Ö. Eriş, and Ö. Ergül, "Realization of multiband microwave metamaterials fabricated via low-cost inkjet printing," 2019 European Microwave Conference in Central Europe (EuMCE), 35-38, Prague, Czech Republic, 2019.

    14. Justin, G. P., "Analysis and design of a new class of miniaturized circular waveguides containing anisotropic metamaterial liners,", The Degree of Doctor of Philosophy's Thesis, Dept. Elect. Comput. Eng., University of Alberta, 2016.

    15. Ravelo, B. and B. Mazari, "Characterization of the regular polygonal waveguide for the RF EM shielding application," Progress In Electromagnetics Research M, Vol. 12, 95-105, 2010.
    doi:10.2528/PIERM10030306

    16. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., IEEE Press, New York, 1991.

    17. Ravelo, B., A. Thakur, A. Saini, and P. Thakur, "Microstrip dielectric substrate material characterization with temperature effect," ACES Journal, Vol. 30, No. 12, 1322-1328, 2015.

    18. Lewi, T., "Thermally reconfigurable meta-optics," IEEE Photonics Journal, Vol. 11, No. 2, 1-16, 2019.
    doi:10.1109/JPHOT.2019.2916161

    19. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Physical Review Letters, Vol. 97, No. 15, 157403.1-157403.4, 2006.
    doi:10.1103/PhysRevLett.97.157403

    20. Engheta, N. and R. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley, 2006.

    21. Alu, A., et al., "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Physical Review B, Condensed Matter and Materials Physics, Vol. 75, No. 15, 155410.13-155410.1, 2007.
    doi:10.1103/PhysRevB.75.155410